Self Studies

Limits and Derivatives Test - 34

Result Self Studies

Limits and Derivatives Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle {f}'(x) = sin\,x + sin\,4x .\, cos \,x $$ then $$\displaystyle {f}'(x) \left (2x^{2} + \dfrac{\pi}{2} \right ) $$ at $$ x = \sqrt{\dfrac{\pi}{2}} $$ is equal to 
    Solution

  • Question 2
    1 / -0
    If $$\displaystyle sin\, y = x\, sin ( a + y) $$ and
    $$\displaystyle \dfrac{dy}{dx} = \dfrac{A}{ 1 + x^{2} - 2x \, cos a } $$ then the value of $$ A $$ is
    Solution

  • Question 3
    1 / -0
    $$ \displaystyle \lim _{x \rightarrow-\infty} \dfrac{x^{2} \tan \dfrac{1}{x}}{\sqrt{8 x^{2}+7 x+1}} $$ is equal to
    Solution
     a. $$\displaystyle \lim _{x \rightarrow-\infty} \dfrac{x^{2} \tan \dfrac{1}{x}}{\sqrt{8 x^{2}+7 x+1}}= \displaystyle \lim _{x \rightarrow-\infty} \dfrac{x^{2} \tan \dfrac{1}{x}}{-x \sqrt{8+\dfrac{7}{x}+\dfrac{1}{x^{2}}}} $$
    $$ =-\displaystyle \lim _{x \rightarrow-\infty} \dfrac{\tan \dfrac{1}{x}}{\dfrac{1}{x} \sqrt{8+\dfrac{7}{x}+\dfrac{1}{x^{2}}}}=-\dfrac{1}{2 \sqrt{2}} $$
  • Question 4
    1 / -0
    $$\displaystyle \lim _{x \rightarrow 0} \dfrac{x\left(e^{x}-1\right)}{1-\cos x} $$ is equal to
    Solution
    $$\displaystyle \lim _{x \rightarrow 0} \dfrac{x\left(e^{x}-1\right)}{1-\cos x}=\lim _{x \rightarrow 0} \dfrac{2 x\left(e^{x}-1\right)}{4 \sin ^{2} \dfrac{x}{2}} $$
    $$ =2 \displaystyle \lim _{x \rightarrow 0}\left[\dfrac{(x / 2)^{2}}{\sin ^{2} \dfrac{x}{2}}\right]\left(\dfrac{e^{x}-1}{x}\right)=2 $$
  • Question 5
    1 / -0
    $$ \displaystyle \lim _{x \to \pi / 2}\left[x \tan x-\left(\dfrac{\pi}{2}\right) \sec x\right] $$ is equal to 
    Solution
     $$ \displaystyle \lim _{x \rightarrow \pi / 2}\left[x \tan x-\left(\dfrac{\pi}{2}\right) \sec x\right] $$

    $$ =\displaystyle \lim _{x \rightarrow \pi / 2} \dfrac{2 x \sin x-\pi}{2 \cos x} \quad\quad\quad \left(\dfrac{0}{0}form\right)$$

    $$ =\displaystyle \lim _{x \rightarrow \pi / 2} \dfrac{[2 \sin x+2 x \cos x]}{-2 \sin x} $$
    (Applying L'Hopital's rule) $$ =-1 $$
  • Question 6
    1 / -0
    If $$ f(x)=\dfrac{\cos x}{(1-\sin x)^{1 / 3}}, $$ then
    Solution
    d. $$\lim _{x \rightarrow \dfrac{\pi}{2}} \dfrac{\cos x}{(1-\sin x)^{1 / 3}}=\lim _{t \rightarrow 0} \dfrac{-\sin t}{(1-\cos t)^{1 / 3}}$$
    $$=-\lim _{t \rightarrow 0} \dfrac{2 \sin \dfrac{t}{2} \cos \dfrac{t}{2}}{\left(2 \sin ^{2} \dfrac{t}{2}\right)^{1 / 3}}$$
    $$ =-\lim _{t \rightarrow 0} 2^{2 / 3} \cos \dfrac{t}{2}\left(\sin \dfrac{t}{2}\right)^{1 / 3}=0 $$
  • Question 7
    1 / -0
    $$ \displaystyle \lim _{x \rightarrow 0} \dfrac{\sin x^{n}}{(\sin x)^{m}},(m<n) $$ is equal to
    Solution
    $$ \displaystyle \lim _{x \rightarrow 0} \dfrac{\sin x^{n}}{(\sin x)^{m}}=\lim _{x \rightarrow 0}\left(\dfrac{\sin x^{n}}{x^{n}}\right)\left(\dfrac{x^{n}}{x^{m}}\right)\left(\dfrac{x}{\sin x}\right)^{m} $$
    $$ =\displaystyle \lim _{x \rightarrow 0} x^{n-m}=0 \quad[\because m<n] $$
  • Question 8
    1 / -0
    $$\displaystyle  \lim _{x \rightarrow 1} \dfrac{1+\sin \pi\left(\dfrac{3 x}{1+x^{2}}\right)}{1+\cos \pi x} $$ is equal to
    Solution
    $$\displaystyle \lim _{x \rightarrow 1} \dfrac{1+\sin \pi\left(\dfrac{3 x}{1+x^{2}}\right)}{1+\cos \pi x} $$
    $$ =\displaystyle \lim _{x \rightarrow 1} \dfrac{1-\cos \left(\dfrac{3 \pi}{2}-\dfrac{3 \pi x}{1+x^{2}}\right)}{1-\cos (\pi-\pi x)} $$
    $$ =\lim _{x \rightarrow 1} \dfrac{2 \sin ^{2}\left(\dfrac{3 \pi}{4}-\dfrac{3 \pi x}{2\left(1+x^{2}\right)}\right)}{2 \sin ^{2}\left(\dfrac{\pi}{2}-\dfrac{\pi x}{2}\right)} $$
    $$ =\displaystyle \lim _{x \rightarrow 1}\left(\dfrac{\dfrac{3 \pi}{4}-\dfrac{3 \pi x}{2\left(1+x^{2}\right)}}{\dfrac{\pi}{2}-\dfrac{\pi x}{2}}\right)^{2} $$
    $$ =\displaystyle \lim _{x \rightarrow 1} 9\left(\dfrac{\dfrac{1}{2}-\dfrac{x}{1+x^{2}}}{1-x}\right)^{2}=\lim _{x \rightarrow 1} 9\left(\dfrac{x-1}{2\left(1+x^{2}\right)}\right)^{2}=0 $$
  • Question 9
    1 / -0
     $$ The \ value \ of  \displaystyle \lim _{x \rightarrow 1}(2-x)^{\tan \dfrac{\pi x}{2}} $$ is
    Solution
    $$ \displaystyle \lim _{x \rightarrow 1}(2-x)^{\tan \dfrac{\pi x}{2}} $$
    $$ =\displaystyle \lim _{x \rightarrow 1}\{1+(1-x)\}^{\tan \dfrac{\pi x}{2}} $$
    $$ =e^{\displaystyle \lim _{x \rightarrow 1}(1-x) \tan \frac{\pi x}{2}} $$
    $$ =e^{\displaystyle \lim _{x \rightarrow 1}(1-x) \cot \left(\dfrac{\pi}{2}-\dfrac{\pi x}{2}\right)} $$
    $$ =e^{\displaystyle \lim _{x \rightarrow 1} \dfrac{(1-x)}{\tan \left(\dfrac{\pi}{2}-\dfrac{\pi x}{2}\right)}} $$
    $$=e^{\dfrac{2}{\pi}\displaystyle \lim_{x \to 1}{\dfrac{\dfrac{\pi}{2}(1-x)}{tan \left(\dfrac{\pi}{2}(1-x)\right)}}}$$
    $$=e^{\dfrac{2}{\pi}}$$
  • Question 10
    1 / -0
    $$\displaystyle \lim _{x \rightarrow 1} \dfrac{1-x^{2}}{\sin 2 \pi x} \text { is equal to }$$
    Solution
     $$\displaystyle \lim _{x \rightarrow 1} \dfrac{1-x^{2}}{\sin 2 \pi x}$$
    $$=-\displaystyle \lim _{x \rightarrow 1} \dfrac{2 \pi(1-x)(1+x)}{2 \pi \sin (2 \pi-2 \pi x)}$$
    $$=-\displaystyle \lim _{x \rightarrow 1} \dfrac{(2 \pi-2 \pi x)}{\sin (2 \pi-2 \pi x)} \dfrac{1+x}{2 \pi}=\dfrac{-1}{\pi}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now