Self Studies

Limits and Derivatives Test - 36

Result Self Studies

Limits and Derivatives Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Directions For Questions

    Consider the function $$f(x)=x+\cos x-a$$

    ...view full instructions

    Which of the following is not true about $$y=f(x)$$?
    Solution
    $$f(x)=x+\cos x -a\Rightarrow f'(x)=1-\sin x \ge 0 \forall x\in R$$.
    Thus $$f(x)$$ is increasing in $$(-\infty , \infty)$$, as for $$f'(x)=0, x$$ is not forming an interval.
    Also $$f"(x)=-\cos x=0$$
    $$\Rightarrow x=(2n+1)\dfrac {\pi}{2}, n\in Z$$
    Hence infinite points of inflection
    Now $$f(0)=1-a$$.
    For positive root $$1-a < 0 \Rightarrow a > 1$$. For negative root 
    $$1-a > 0\Rightarrow a < 1$$.
  • Question 2
    1 / -0
    Differential coefficient of $$\sec (\tan^{-1} x)$$ w.r.t. x is
    Solution
    a
  • Question 3
    1 / -0

    Given that $$f (x)$$
    is a differentiable function of $$ x$$ and that $$f(x)$$ . $$f (y)$$ =  $$f (x) $$+ $$f (y)$$ + $$f (xy) -2$$ and that
    $$f (2) =5$$.

    Then $$f (3)$$ is equal to?

    Solution
    Given, $$f\left( x \right) .f\left( y \right) =f\left( x \right) +f\left( y \right) +f\left( xy \right) -2\quad -(1)$$
    $$f\left( 2 \right) =5$$
    $$f\left( x \right) ={ x }^{ 2 }+1$$
    Equation $$1 \Rightarrow $$ $$\left( { x }^{ 2 }+1 \right) \left( { y }^{ 2 }+1 \right) ={ x }^{ 2 }+1+{ y }^{ 2 }+1+{ x }^{ 2 }{ y }^{ 2 }+1-2$$
    $${ x }^{ 2 }{ y }^{ 2 }+{ x }^{ 2 }+{ y }^{ 2 }+1={ x }^{ 2 }+{ y }^{ 2 }+{ x }^{ 2 }{ y }^{ 2 }+1$$
    $$\therefore f\left( 3 \right) ={ x }^{ 2 }+1={ 3 }^{ 2 }+1=10$$
  • Question 4
    1 / -0
    lf $${f}'({x})={g}({x})$$ and $${g}'({x})=-{f}({x})$$ for all $$x$$ and $${f}(2)=4= {g}(2)$$, then $${f}^{2}(24)+{g}^{2}(24)$$ is
    Solution
    $$f(x) = -g'(x)$$     (given)
    By multiply both sides with $$f'(x)$$, we get
    $$f(x)f'(x) = -g'(x)f'(x)$$    ...(1)
    $$\because f'(x) = g(x)$$
    $$\therefore$$ Eqn (1) becomes
    $$f(x)f'(x) = -g(x)g'(x)$$
    Now integrating both sides, we get
    $$f^2(x) + g^2(x) = c$$
    Where, $$c$$ is the constant of integration.
    Now, it is given that $$f(2) = g(2) = 4$$
    $$\therefore c = 32$$
    $$\implies f^2(24) + g^2(24) = 32$$

    Hence, option A is correct.
  • Question 5
    1 / -0
    Assertion(A): Let $${ f }({ x })$$ be twice differentiable function such that $$f^{ '' }(x)=-{ f }({ x })$$ and $$f^{ ' }(x)={ g }({ x })$$. lf $${ h }({ x })=[{ f }({ x })]^{ 2 }+[{ g }({ x })]^{ 2 }$$ and $${ h }(1)=8$$, then $${ h }(2)=8$$

    Reason (R): Derivative of a constant function is zero.
    Solution
    Let $$f(x)=c$$
    $${f}'(x)=0$$ So Reason is True

    Now, $$h(x) = [f(x)]^2 + [g(x)]^2$$
    $${h}'(x)=2f(x){f}'(x)+2g(x){g}'(x)$$
    $$=2f(x)g(x)+2g(x){f}''(x)$$       ...since $$f'(x) = g(x) \Rightarrow f''(x) = g'(x)$$
    $$=2g(x)[f(x) + f''(x)]$$
    $$=2g(x)(f(x)-f(x))$$
    $$\Rightarrow {h}'(x)=0$$
    means $$h(x)=C$$ (a constant function)
    Given $$h(1)=8$$
    $$\Rightarrow h(x)=8$$
    Hence, $$f(2)= 8$$
    So, both A and R are correct and R is the correct explanation of A.
  • Question 6
    1 / -0
    Assertion (A): lf $$f(x)=\cos^{2}x+\cos^{2}\left(x+\dfrac{\pi}3\right)- \cos x \cos \left(x+\dfrac{\pi}3\right)$$ then $$f'(x)=0$$

    Reason(R): Derivative of constant function is zero
    Solution
    $$f(x)=\cos ^{2}x+\cos ^{2}(x+\cfrac{\pi }{3})-2\cos   x  \cos (x+\cfrac{\pi }{3})+\cos   x  \cos (x+\cfrac{\pi }{3})$$
         $$=(\cos  x - \cos (x+\cfrac{\pi }{3}))^{2} + \cos  x \cos (x+\cfrac{\pi }{3}) $$
         $$=(\cos  x - (\cfrac{1}{2}\cos  x - \cfrac{\sqrt{3}}{2} \sin  x ))^{2} + \cos  x \cos  (x+\cfrac{\pi }{3})$$
         $$=(\cfrac{\cos  x }{2} + \cfrac{\sqrt{3}}{2} \sin  x )^{2} + \cos  x \cos  (x+\cfrac{\pi }{3})$$
         $$=\cfrac{\cos^2x}4 + \cfrac{3\sin^2x}4 +\cfrac{\sqrt3}2 \sin x\cos x + \cos x\left(\cfrac{\cos x}2 - \cfrac{\sqrt3}2\sin x\right)$$
    $$f(x)=\cfrac{3}{4}$$
    $$f{}'(x)=0$$  
  • Question 7
    1 / -0
    lf $$ \displaystyle \mathrm{f}(\mathrm{x})=\mathrm{x}.\sin \frac{1}{x}$$ for $$x \neq 0,\ \mathrm{f}(\mathrm{0})=0$$ then?
    Solution
    If $$f(x)$$ is continuous at $$x=0$$, then $$ \displaystyle \lim _{ x\rightarrow { 0 }^{ - } }{ f(x) } =\lim _{ x\rightarrow { 0 }^{ + } }{ f(x) } =f(0)$$
    $$ \displaystyle LHL = \lim _{ h\rightarrow 0 }{ \left[ (0-h)\sin { \left( \frac { 1 }{0- h }  \right)  }  \right]  } =\lim _{ h\rightarrow 0 }{ h\sin { \frac { 1 }{ h }  }  } =0\times \; number\; bet.\; 0 \; and \; 1=0$$
    $$ \displaystyle RHL= \lim _{ h\rightarrow 0 }{ h\sin { \frac { 1 }{ h }  }  } =0\times \; number=0$$
    Hence $$LHL=RHL=f(0)$$. The given function is continuous at $$x=0$$
    .
    $$ \displaystyle f'\left( x \right) =\lim _{ h\rightarrow 0 }{ \frac { h\sin { \frac { 1 }{ h }  } -f\left( 0 \right)  }{ h }  } =\lim _{ h\rightarrow 0 }{ \sin { \frac { 1 }{ h }  }  } -0=\lim _{ h\rightarrow 0 }{ \sin { \frac { 1 }{ h }  }  } $$
    Since this limit does not exist, the given function is not differentiable at $$x=0$$

  • Question 8
    1 / -0
    The graph of the function $$y = f (x)$$ has a unique tangent at the point $$(e^{a} ,0)$$ through which the graph passes then $$\displaystyle \lim_{x\rightarrow e^{a}}\frac{log_{e}\{1+7f(x)\}-sinf(x)}{3f(x)}$$ is
    Solution
    Given $$y=f(x)$$ has a unique tangent at the point $$(e^a,0)$$. 
    So, as $$x\rightarrow e^{a}$$, $$f(x)\rightarrow 0$$

    Now, $$\displaystyle \lim_{x\rightarrow e^{a}}\frac{log_{e}\{1+7f(x)\}-\sin f(x)}{3f(x)}$$

    $$\displaystyle \lim _{ x\rightarrow e^{ a } } \frac { log_{ e }(1+7f(x)) }{ 3f(x) } -\frac { \sin f(x) }{ 3f(x) } $$

    $$\displaystyle =\frac { 7 }{ 3 } \lim _{ x\rightarrow e^{ a } } \frac { log_{ e }(1+7f(x)) }{ 7f(x) } -\frac { 1 }{ 3 } \lim _{ x\rightarrow e^{ a } } \frac { \sin f(x) }{ f(x) } $$

    $$=\dfrac{7-1}{3}=2$$
  • Question 9
    1 / -0
    $$f(x)=|x-1|+|x-3|$$ then $$f^{'}(2)=$$
    Solution
    $$f(x) = |x-1|+|x-3| =\begin{cases} -(x-1)-(x-3), x\le 1\\(x-1)-(x-3), 1< x\le 3\\x-1+(x-3), x>3\end{cases}$$
    $$\Rightarrow f(x) =\begin{cases} 4-2x, x\le 1\\2, 1< x\le 3\\2x-4, x>3\end{cases}$$
    $$\therefore f'(x) =\begin{cases} -2, x\le 1\\0, 1< x\le 3\\2, x>3\end{cases}$$
    Hence $$f'(2) =0$$
  • Question 10
    1 / -0

     Let $$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}\mathrm{x}^{\mathrm{n}}\sin\frac{1}{\mathrm{x}},\quad  \mathrm{x}\neq 0\\0, \quad \mathrm{x}=0\end{array}\right.$$ , then f(x) is continuous but not differentiable at x=0 if
    Solution
    Since, $$f\left( x \right)$$ is continuous at $$x=0$$, therefore, $$\displaystyle \lim _{ x\rightarrow 0 }{ f\left( x \right) } =f\left( 0 \right) =0$$

    $$\displaystyle\Rightarrow \lim _{ x\rightarrow 0 }{ { x }^{ n } } \sin { \left( \frac { 1 }{ x }  \right)  } =0\Rightarrow n>0$$

    $$f(x)$$ is differential at $$x=0$$ if $$\displaystyle \lim _{ x\rightarrow 0 }{ \frac { f\left( x \right)-f\left( 0 \right)  }{ x-0 }  } $$ exists finitely

    $$\displaystyle \Rightarrow \lim _{ x\rightarrow 0 }{ \frac { { x }^{ n }\sin { \left( \frac { 1 }{ x }  \right)  } -0 }{ x }  } $$ exists finitely

    $$\displaystyle \Rightarrow { x }^{ n-1 }\sin { \left( \frac { 1 }{ x }  \right)  } $$ exists finitely.

    $$\Rightarrow n-1>0 \Rightarrow  n>1$$

    If $$n\le1$$, then $$\displaystyle \lim _{ x\rightarrow 0 }{ { x }^{ n-1 }\sin { \left( \frac { 1 }{ x }  \right)  }  } $$ does not exists and hence, $$f(x)$$ is not differentiable at $$x=0$$

    Hence, $$f(x)$$ is continuous but not differentiable at $$x=0$$ for $$0<n\le1$$

    i.e., $$n\in (0,1]$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now