Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    Let $$f(x)$$ be a polynomial function of second degree.If $$f(1)=f(-1)$$ and  $$a,b,c$$ are in A.P $$ f'(a)$$,$$f'(b)$$,$$f'(c)$$ are in 

  • Question 2
    1 / -0

    If $$\phi (x) =\displaystyle \lim_{n \rightarrow \infty} \frac{x^{2n} f(x) + g(x)}{1 + x^{2n}}$$, then

  • Question 3
    1 / -0

    Let $$f(x) = \sqrt{x - 1} + \sqrt{x + 24 - 10\sqrt{x - 1}}, 1 \le x \le 26$$ be a real valued function, then $$f'(x)$$ for $$1 < x < 26$$ is

  • Question 4
    1 / -0

    Let $$f$$ be a differentiable function satisfying $$f(x) + f(y) + f(z) + f(x)f(y)f(z) = 14$$ for all $$x,\space y,\space z \in R$$
    Then,

  • Question 5
    1 / -0

    Given  $$f(x)=-\displaystyle \frac{x^3}{3}+x^2\sin 1.5a-x\sin a.\sin 2a-5 \arcsin (a^2-8a+17)$$ then :

  • Question 6
    1 / -0

    Suppose, $$A=\displaystyle \frac {dy}{dx}$$ of $$x^2+y^2=4$$ at $$(\sqrt 2, \sqrt 2), B=\displaystyle \frac {dy}{dx}$$ of $$sin y+sin x=sin x\cdot sin y$$ at $$(\pi, \pi)$$ and $$C=\displaystyle \frac {dy}{dx}$$ of $$2e^{xy}+e^xe^y-e^x=e^{xy+1}$$ at $$(1, 1)$$, then $$(A-B-C)$$ has the value equal to .....

  • Question 7
    1 / -0

    Suppose $$A=\displaystyle \frac{dy}{dx}$$ when $$x^2+y^2=4$$ at $$(\sqrt{2},\sqrt{2})$$,$$ B=\displaystyle \frac{dy}{dx}$$ when $$\sin y+ \sin x=\sin x-\sin y$$ at $$(\pi,\pi)$$ and $$C=\displaystyle  \frac{dy}{dx}$$ when $$2e^{xy}+e^x e^y-e^x-e^y=e^{xy+1}$$ at $$(1,1)$$, then $$(A+B+C)$$ has the value equal to 

  • Question 8
    1 / -0

    If $$\displaystyle\lim_{x\rightarrow a}{(f(x)+g(x))}=2$$ and $$\displaystyle\lim_{x\rightarrow a}{(f(x)-g(x))}=1$$, 

    then the value of $$\displaystyle\lim_{x\rightarrow a}{f(x)g(x)}$$ is?

  • Question 9
    1 / -0

    Let f and g be differentiable function such that $${f}'\left ( x \right )=2g\left ( x \right )$$ and $${g}'\left ( x \right )=-f\left ( x \right )$$, and let $$T\left ( x \right )=\left ( f\left ( x \right ) \right )^{2}-\left ( g\left ( x \right ) \right )^{2}$$. Then $${T}'\left ( x \right )$$ is equal to

  • Question 10
    1 / -0

    The value of $$\displaystyle \underset { n\rightarrow \infty  }{ lim } \left( \frac { 1 }{ n+1 } +\frac { 1 }{ n+2 } +...+\frac { 1 }{ 6n }  \right) $$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now