Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    \(\lim\limits_{x \to \pi} \frac{sin x}{x - \pi} \) is

  • Question 2
    1 / -0

    \(\lim\limits_{x \to 0} \frac{x^2 cos x}{1-cosx}\) is

  • Question 3
    1 / -0

    \(\lim\limits_{x \to 0} \frac{(1 + x)^n - 1}{x}\) is

  • Question 4
    1 / -0

    \(\lim \limits_{x \to 1} \frac{x^m - 1}{x^n - 1}\) is

  • Question 5
    1 / -0

    \(\lim\limits_{\theta \to 0} \frac{1 - cos 4 \theta}{1 - cos 6 \theta} \) is

  • Question 6
    1 / -0

    \(\lim\limits_{x \to 0} \frac{cosec x - cot x}{x}\) is

  • Question 7
    1 / -0

    \( \lim\limits_{x \to 0} \frac{sin x}{\sqrt{x+1} - \sqrt{1-x}}\) is

  • Question 8
    1 / -0

    \(\lim\limits_{x \to \frac{\pi}{4}} \frac{sec^2 x - 2}{tan x - 1}\) is

  • Question 9
    1 / -0

    \(\lim\limits_{x \to 1} \frac{(\sqrt x - 1)(2x -3)}{2x^2 + x -3}\) is

  • Question 10
    1 / -0

    If f(x) = \( \begin{cases} \frac{sin[x]}{[x]}, & \quad [x] \neq 0 \\ 0, & \quad [x] = 0 \end{cases} \), where [.] denotes the greatest integer function, then \(\lim\limits_{x \to 0}\) f(x) is equal to

  • Question 11
    1 / -0

    \(\lim\limits_{x \to 0} \frac{|sin x|}{x} \) is

  • Question 12
    1 / -0

    Let \(f(x) = \begin{cases} x^2 - 1, & \quad 0 < x < 2 \\ 2x + 3, & \quad 2 \leq x < 3 \end{cases}\), the quadratic equation whose roots are \(\lim\limits_{x \to 2^-}\) f(x) and \(\lim\limits_{x \to 2^+} \) f(x) is

  • Question 13
    1 / -0

    \(\lim\limits_{x \to 0} \frac{tan 2x - x}{3x - sin x}\) is

  • Question 14
    1 / -0

    Let f (x) = x – [x]; ∈ R, then f' \(\frac{1}{2}\) is

  • Question 15
    1 / -0

    If \(y = \sqrt x + \frac{1}{\sqrt x}\), then \(\frac{dy}{dx}\) at x = 1 is

  • Question 16
    1 / -0

    If f(x) = \(\frac{x - 4}{2 \sqrt x}\), then f ′(1) is

  • Question 17
    1 / -0

    If \(y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\), then \(\frac{dy}{dx}\) is

  • Question 18
    1 / -0

    If \(y = \frac{sin x + cosx}{sinx - cosx}\), then \(\frac{dy}{dx}\) at x = 0 is

  • Question 19
    1 / -0

    If \(y = \frac{sin(x + 9)}{cos x}\), then \(\frac{dy}{dx} \) at x = 0 is

  • Question 20
    1 / -0

    If f(x) = \(1 + x + \frac{x^2}{2} + \dots + \frac{x^{100}}{100}\), then f ′(1) is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 20

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now