Self Studies

Mathematical Reasoning Test - 26

Result Self Studies

Mathematical Reasoning Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\sim \left[ p\wedge (\sim q) \right] =$$
    Solution
    $$\sim \left [p\wedge(\sim q)\right]=\sim p\vee\sim (\sim q)$$    (by demorgan's law)
                            $$=\sim p\vee q$$      ($$\because \sim(\sim p)=p$$)

    Option $$D$$ is correct.
  • Question 2
    1 / -0
    If $$p, q, r$$ are simple proportions with truth values $$T, F, T$$, then the truth value of $$(\sim p\vee q)\wedge \sim r \Rightarrow p$$ is
    Solution
    $$\sim p\vee q$$ means $$F\vee F = F, \sim r$$ means $$F$$

    $$\therefore [(\sim p\vee q)\wedge \sim r)=F\wedge F = F$$ which imply $$ p = T$$ means $$F\Rightarrow T = T$$.

    Hence, the truth value of the given statement is True.
  • Question 3
    1 / -0
    $$p \leftrightarrow q$$ is equivalent to
    Solution
    Consider truth table of $$p\leftrightarrow q$$ $$($$ Let $$T$$ denotes true ans $$F$$ denotes false$$)$$
                     If $$p=T$$ and $$q=T$$ then $$p\leftrightarrow q = T$$
                     If $$p=T$$ and $$q=F$$ then $$p\leftrightarrow q = F$$
                     If $$p=F$$ and $$q=T$$ then $$p\leftrightarrow q = F$$
                     If $$p=F$$ and $$q=F$$ then $$p\leftrightarrow q = T$$
    Now consider truth table of $$(p\rightarrow q)\wedge (q\rightarrow p)$$
                     If $$p=T$$ and $$q=T$$ then $$(p\rightarrow q)\wedge (q\rightarrow p) = T$$
                     If $$p=T$$ and $$q=F$$ then $$(p\rightarrow q)\wedge (q\rightarrow p) = F$$
                     If $$p=F$$ and $$q=T$$ then $$(p\rightarrow q)\wedge (q\rightarrow p) = F$$
                     If $$p=F$$ and $$q=F$$ then $$(p\rightarrow q)\wedge (q\rightarrow p) = T$$
    Observe that both truth tables are equal , therefore the correct option is $$D$$
  • Question 4
    1 / -0
    The inverse of the propositions $$(p \wedge \sim q) \rightarrow r$$ is____.
    Solution
    In logic, an inverse is a type of conditional sentence which is an immediate interference made from another conditional sentence. Any conditional sentence has an inverse. The inverse of $$P\rightarrow Q\quad is\quad \neg P\rightarrow \neg Q$$
    Hence, answer is (r) $$\rightarrow$$ (p∨ q
  • Question 5
    1 / -0
    If $$p$$ is $$T$$ and $$q$$ is $$F$$, then which of the following have the truth value $$T$$?
    $$(i)p\vee q$$
    $$(ii)\sim p\vee q$$
    $$(iii)p\vee (\sim q)$$
    $$(iv)p\wedge (\sim q)$$
    Solution
    $$(i)p\vee q  = T\vee F =T$$
    $$(ii)\sim p\vee q=(\sim T)\vee F = F\vee F=F$$
    $$(iii)p\vee (\sim q)=T\vee (\sim F)=T\vee T= T$$
    $$(iv)p\wedge (\sim q)=T\wedge (\sim F)=T\wedge T=T$$

    Hence option 'C' is correct  
  • Question 6
    1 / -0
    If $$p:3$$ is a prime number and $$q:$$ one plus one is three, then the compound statement "It is not that $$3$$ is a prime number or it is not that one plus one is three" is
    Solution
    $$p:3$$ is a prime number
    $$q:$$ one plus one is three

    Compound statement: "It is not that $$3$$ is a prime number or it is not that one plus one is three" is
    $$\sim p\vee \sim q$$
  • Question 7
    1 / -0
    If $$p$$'s truth value is $$T$$ and $$q$$'s truth value is $$F$$, then which of the following have the truth value $$T$$?
    (i) $$p\vee q$$
    (ii) $$\sim p\vee q$$
    (iii) $$p\vee (\sim q)$$
    (iv) $$p\wedge (\sim q)$$
    Solution
    Given $$p's$$ truth value is $$T$$ and $$q's$$ truth value is $$F$$.

    We have to determine which of the given have the truth value $$T$$.

    $$(i) p\vee q$$

     $$p$$ $$q$$ $$p \vee q$$
      $$T$$  $$F$$  $$T$$
    $$(ii) \sim p\vee q$$

     $$p$$ $$\sim p$$ $$q$$ $$\sim p \vee q$$
     $$T$$ $$F$$ $$F$$ $$F$$

    $$(iii) p\vee (\sim q)$$

     $$p$$ $$q$$ $$\sim q$$ $$p \vee (\sim q)$$
     $$T$$ $$F$$ $$T$$ $$T$$

    $$(iv) p\wedge (\sim q)$$

     $$p$$ $$q$$ $$\sim q$$ $$p \wedge (\sim q)$$
     $$T$$ $$F$$ $$T$$ $$T$$


    From the above tables we see that, $$(i), (iii), (iv)$$ have truth value $$T$$.
  • Question 8
    1 / -0
    Which of the following is not a logical statement?
    Solution
    A) $$8$$ is less than $$6$$ $$ \rightarrow $$ logical
    B) Every set is a finite set $$ \rightarrow $$ logical
    C) Kashmir is far from here $$ \rightarrow $$ not a logical statement
    D) The sun is a star $$ \rightarrow $$ logical
  • Question 9
    1 / -0
    The truth values of $$p, q$$ and $$r$$ for which $$(p \wedge q) \vee (\sim r)$$ has truth value F are respectively
    Solution
     option  $$p$$$$q$$ $$r$$ $$p\wedge q$$  $$\sim r$$$$(p\wedge q)\vee (\sim r)$$ 
     A$$ F$$ $$T$$ $$ F$$ $$ F$$$$T$$
     $$T$$
     B $$ F$$ $$ F$$ $$ F$$ $$ F$$ $$T$$ $$T$$
     C $$T$$ $$T$$ $$T$$ $$T$$ $$ F$$ $$T$$
     D $$T$$ $$ F$$$$ F$$
     $$ F$$ $$T$$ $$T$$
     E $$ F$$ $$ F$$$$T$$
     $$ F$$ $$ F$$ $$ F$$
    Option $$E$$ gives truth value $$F$$ .
    So option $$E$$ is correct.
  • Question 10
    1 / -0
    $$\left( p\wedge \sim q \right) \wedge \left( \sim p\wedge q \right) $$ is a :
    Solution
    $$\left( p\wedge \sim q \right) \left( \sim p\wedge q \right) =\left( p\wedge \sim p \right) \wedge \left( \sim q\wedge q \right) $$

    $$=f\wedge f=f$$
    (By using associative laws and commutative laws)

    Therefore, $$ \left( p\wedge \sim q \right) \wedge \left( \sim p\wedge q \right) $$ is a contradiction.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now