Self Studies

Statistics Test - 30

Result Self Studies

Statistics Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Consider the data: $$2, x, 3, 4, 5, 2, 4, 6, 4$$ where $$x >2$$
    The mode of the data is _____
    Solution
    The value which occurs the maximum number of times in a given set of data is know as mode.
    In the given data $$4$$ occurs 3 times and hence it is the mode. But $$x$$ is unknown.
    We know that $$x>2$$
    Hence even if we consider $$x$$ as $$3,4,5\ or\ 6$$ still $$4$$ will remain as the mode.
    Hence $$4$$ is the ans.
  • Question 2
    1 / -0
    For the given data, SD $$= 10$$, AM $$= 20$$ the coefficient of variation is ...........
    Solution
    Coefficient of variation is the ratio of standard deviation to the mean.

    Given that $$SD=10$$ and $$AM=20$$

    Therefore of coefficient of variation is $$\dfrac{SD}{AM}\times100=\dfrac{10}{20}\times100=50\%$$
  • Question 3
    1 / -0
    Find the standard deviation of $$210, 240, 250, 260, 220, 230$$ and $$270$$.
    Solution
    Mean of the given numbers is $$\bar x =\dfrac{210+240+250+260+220+230+270}{7}=\dfrac{1680}{7}=240$$

    total number of values $$n=7$$

    Standard deviation is given by $$SD=\sqrt{\dfrac{\sum_{i=1}^n (x_i-\bar x)^2}{n}}$$

    $$\implies SD=\sqrt{\dfrac{(210-240)^2+(240-240)^2+.....+(270-240)^2}{7}}$$

    $$\implies SD=\sqrt{\dfrac{900+0+100+400+400+100+900}{7}}$$

    $$\implies SD=\sqrt{\dfrac{2800}{7}}$$

    $$\implies SD=\sqrt{400}=20$$

    Therefore the standard deviation for the given values is $$20$$
  • Question 4
    1 / -0
    The ages (in years) of a family of 6 members are 1, 5, 12, 15, 38 and 40. The standard deviation is found to be 15.9.  After 10 years the standard deviation is
    Solution
    Then mean of six members=$$\frac{1+5+12+15+38+40}{6}=\frac{111}{6}=18.5$$
    Then Variance $$\alpha ^{2}=\frac{(18.5-1)^{2}+(18.5-5)^{2}+(18.5-12)^{2}+(18.5-15)^{2}+(18.5-38)^{2}+(18.5-40)^{2}}{5}$$
                                   $$=\frac{(17.5)^{2}+(13.5)^{2}+(6.5)^{2}+(3.5)^{2}+(-19.5)^{2}+(21.5)^{2}}{6}$$
                                   $$=\frac{306.25+182.25+42.25+12.25+380.25++462.25}{6}=\frac{1385.50}{6}=230.91$$
    So standard deviation $$\alpha =15.19$$
    Given after 10 year The standard deviation is 15.9
    Then standard deviation remain same
  • Question 5
    1 / -0
    Find the mode of 0,0,2,2,3,3,3,4,5,5,5,5,6,6,7,8
    Solution
    $$Number$$                     $$Frequency$$
             0                                     2
             2                                     2
             3                                     3
             4                                     1   
             5                                     4 
             6                                     2
             7                                      1
             8                                      1
     
    Frequency of 5 is maximum. Hence 5 is the mode.         
  • Question 6
    1 / -0
    Find the mean for the following data using step deviation method.

    Solution
    Answer:- By shortcut Method
    Class interval width (w) = 2

    $$X_i$$  $$F_i$$$$d=\cfrac{X-A}{i}$$ $$F_i d_i$$ 
     10-1 -10
    4=A 200
    6 30130
    8 40280
      $$\Sigma f = 100$$  $$\Sigma fd = 100$$ 
    Mean = $$A+\cfrac{\Sigma fd}{\Sigma f} \times w=4+\cfrac{100}{100} \times 2 ={4+2}=6$$
    C)6
  • Question 7
    1 / -0
    Branch 
    A
    Branch 
    B
    Branch
    C
    Branch
    D
    Q14.17.48.05.4
    Q23.65.23.76.2
    Q35.04.54.94.8
    Q44.96.35.95.6
    $$\overline { x } $$4.45.855.6255.5
    $$s$$0.671.271.820.85

    A company wants to close one of its branch due to recession. The table given shows each branch's quarterly profit data with mean $$(\bar{x})$$ and standard deviation $$(s)$$. Company's finance department recommendations were taken into final conclusion. Finance department recommends to close either the store with the lowest average profits or the store that performs the least consistently. According to the data, which branches will the finance department recommend for closure to the board?
    Solution
    In the given problem finance department will recommend branch with least avg profit (i.e least mean profit) or branch with least consistency (i.e. least standard deviation)
    therefore, Branch A has least mean value and Branch C has maximum std deviation .
    Ans is A (Branches A or C) 
     
  • Question 8
    1 / -0
    Choose the formula used for arithmetic mean of grouped data by step deviation method is
    Solution
    The formula used for arithmetic mean of groped data by step deviation method is $$\bar { x } =A+\dfrac { \sum { fd\prime  }  }{ \sum { f }  } \times i$$
    $$A =$$ Assumed mean of the given data
    $$\sum { f } =$$ Summation of the frequencies given in the grouped data
    $$\sum { fd\prime  } =$$ Summation of the frequencies and deviation of a given mean data
    $$d\prime =\dfrac { x-A }{ i } $$ 
    $$i =$$ Class interval width
    $$\bar { x } =$$ Arithmetic mean
  • Question 9
    1 / -0
    Find the mean for the following data using step deviation method.

    Solution
    Answer:- By shortcut Method
    Class interval width (w) = 3

     F$$d=\cfrac{X-A}{i}$$ Fd 
    3 5-1 -5
    6=A 10-0-0
    9 15115
    12 20240
      $$\Sigma f = 50$$  $$\Sigma fd = 50$$ 
    Mean = $$A+\cfrac{\Sigma fd}{\Sigma f} \times i=6+\left(\cfrac{50}{50} \times 3\right) = 6+3 = 9$$
    A) 9
  • Question 10
    1 / -0
    Find the mean for the following data using step deviation method.

    Solution
    Answer:- By shortcut Method
    Class interval width (i)= 24-12 = 12

    F$$d=\cfrac{x-A}{i} $$Fd 
    12=A100
    24212
    36326
    484312
    605420
     $$\Sigma f = 15$$  $$\Sigma fd = 40$$ 
    Mean = $$A+\cfrac{\Sigma fd}{\Sigma f} \times i=12+\left(\cfrac{40}{15} \times 12\right)={12+32}=44$$
    B)44
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now