Self Studies

Statistics Test - 44

Result Self Studies

Statistics Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The mean of first ten prime numbers is 
    Solution
    First 10 prime numbers are $$2,3,5,7,11,13,17,19,23,29$$
    Formula used:
    $$Arithmetic\ mean= \dfrac{Sum\ of\ given\ numbers}{Total\ numbers}$$

    Apply the above formula, we get

    Mean=$$\frac{2+3+5+7+11+13+17+19+23+29}{10}=12.9$$
  • Question 2
    1 / -0
    Mode of the data $$3,2,5,2,3,5,6,6,5,3,5,2,5$$ is 
    Solution


         $${\textbf{Step -1: Find the number used maximum times.}}$$

          $${\text{Given numbers: 3,2,5,2,3,5,6,6,5,3,5,2,5}} $$

            $$ {x_i}:{\text{2  3  5  6}} $$

            $$  {f_i}:{\text{3  3  5  2  }} $$

            $$\rightarrow {x_i} = {\text{Given numbers}} $$

            $$\rightarrow {f_i} = {\text{how many times Given number is written}} $$

             $$  {\text{Mode of the data is the maximum times a number is repeated in the given data}}{\text{.}} $$

             $${\text{Since 5 is repeated maximum times in the given data, mode is 5.}}$$

          $$  {\textbf{Hence, The correct answer is option D}} $$

     

     

  • Question 3
    1 / -0
    Standard deviation of four observations $$-1, 0, 1$$ and k is $$\sqrt{5}$$ then k will be?
    Solution
    $$\sigma^2=\dfrac{\displaystyle\sum x^2_i}{n}-\left(\dfrac{\displaystyle\sum x_i}{n}\right)^2$$
    $$\Rightarrow 5=\dfrac{1+0+1+k^2}{4}-\left(\dfrac{-1+0+1+k}{4}\right)^2$$
    $$\Rightarrow 5=\dfrac{k^2+2}{4}=\dfrac{k^2}{16}$$
    $$\Rightarrow 80=4k^2+8-k^2$$
    $$\Rightarrow 72=3k^2$$
    $$\Rightarrow k=2\sqrt{6}$$.
  • Question 4
    1 / -0
    For a random variable $$X$$. If $$E(X)=5$$ and $$V(X)=6$$, then $$E(X^{2})$$ is equal to 
    Solution
    As we know that,

    $$V{\left( X \right)} = E{\left( {X}^{2} \right)} - {\left( E{\left( X \right)} \right)}^{2}$$

    $$\therefore 6 = E{\left( {X}^{2} \right)} - {5}^{2}$$

    $$\Rightarrow E{\left( {X}^{2} \right)} = 6 + 25 = 31$$
  • Question 5
    1 / -0
    The AM of first $$5$$ whole numbers is:
    Solution
    The first $$5$$ whole numbers are $$0, 1, 2, 3, 4$$.

    We know that,
    $$Arithmetic\ mean= \dfrac{Sum\ of\ given\ numbers}{Total\ numbers}$$

    Apply the above formula, we get

    $$Arithmetic\ mean= \dfrac{0+1+2+3+4}{5}$$
                                      $$= \dfrac{10}{5}$$
                                      $$= 2$$

    Hence, option $$(b)$$ is correct.
  • Question 6
    1 / -0
    $$9898, 8998, 9889, 8899, 9988, 8989, 9998$$.
    If the numbers above are arranged in an ascending or descending order. Which number will appear in the middle place?
    Solution

  • Question 7
    1 / -0
    If expected value in n Bernoulli trials is $$8$$ and variance is $$4$$. If $$P(x\leq 2)=\dfrac{k}{2^{16}}$$ then value of k is?
    Solution
    Let number of trials be n and probability of success $$=$$p, probability of failure $$=$$q
    Given $$np=8, npq=4$$
    $$\Rightarrow q=\dfrac{1}{2}, p=\dfrac{1}{2}, n=16$$ (as $$p+q=1$$)
    $$p(x\leq 2)=\dfrac{^{16}C_0 +{^{16}C_1}+{^{16}C_2}{2^{16}}}=\dfrac{1+16+120}{2^{16}}=\dfrac{137}{2^{16}}$$
    Hence $$(2)$$.
  • Question 8
    1 / -0
    The standard deviation of the data $$6,5,9, 13, 12, 8, 10$$ is 
    Solution
    Given data $$6,5,9,13,12,8,10$$ Mean of the given data $$(\bar{x})$$
    $$=\dfrac{6+5+9+13+12+8+10}{7}$$
    $$=\dfrac{63}{7}=9$$
    The deviation of the respective data from the mean i.e. $$(x_i-\bar{x})$$ are
    $$6-9,5-9,9-9,13-9,12-9,8-9,10-9$$
    $$(x_i-\bar{x})=-3,-4,0,4,3,-1,1$$
    $$(x_1-\bar{x})^2=9,16,0,16,9,1,1$$
    $$\displaystyle \sum^7_{i=i} (x_1-\bar{x})^2=9+16+0+16+9+1+1=52$$
    $$\therefore$$ standard deviation $$(\sigma)$$
    $$\displaystyle =\sqrt{\dfrac{1}{n}\sum^7_{i=1} (x_1-\bar{x})^2}=\sqrt{\dfrac{52}{7}}$$
  • Question 9
    1 / -0
    The mean of $$5$$ observation is $$4.4$$ and variance is $$8.24$$. If three of the five observations are $$1,2$$ and $$6$$, then what are the other two observations ? 
    Solution
    Let the other two observations be x and y .

    Therefore, the series is $$1, 2, 6,x,y$$

    Now Mean $$x = 4.4 = \dfrac{(1+2+ 6 +x + y) }{5}$$

    or $$22 = 9 + x + y$$

    Therefore

    $$x + y = 13$$ ... (1)

    Also

    variance $$= 8.24 =\dfrac{1}{n}\sum  ( x_i - x)^2$$

    $$ 8.24 = \dfrac{1}{5}[ (3.4)^2 + (2.4)^2 + (1.6)^2 + x^2 +y^2 – 2(4.4) (x + y) + 2(4.4)^2]$$

    $$ 41.20 = 11.56 + 5.76 + 2.56 + x^2 + y^2 – 8.8\times13 + 38.72$$

    Therefore $$x^2 + y^2 = 97$$ …....... (2)

    But from (1), we have

    $$x^2 + y^2 + 2xy = 169$$ …......... (3)

    From (2) and (3), we have

    $$2xy = 72$$ ... (4)

    Subtracting (4) from (2), we get

    $$x^2 + y^2 – 2 xy = 97 – 72$$

    i.e. $$(x– y)^2 = 25$$

    or

    $$x – y = \pm 5$$ …..... (5)

    So, from (1) and (5), we get

    $$x = 9, y = 4 $$when

    $$x – y = 5$$

    or

    $$x = 4, y = 9 $$ when $$x – y = – 5$$

    Thus, the remaining observations are $$9,4 $$
  • Question 10
    1 / -0
    The number of trees in different parks of a city is $$ 33,38,48,33,34,34,33$$ and $$ 24$$. The mode of this data is
    Solution
    The given data in ascending order is $$24,33,33,33,34,34,38$$  and  $$48$$,
    The mode of data is $$33$$ because the frequent of occurrence of $$33$$ is highest.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now