Self Studies

Probability Test - 25

Result Self Studies

Probability Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$P(A\cup B)=\dfrac {2}{3}, P(A\cap B)=\dfrac {1}{6}$$ and $$P(A)=\dfrac {1}{3}$$, then 
    Solution
    If $$P(A\cup B)=\frac {2}{3}$$
    $$P(A\cap B) = \frac {1}{6}$$
    $$P(A)=\frac {1}{3}$$
    $$P(A\cup B) = P(A) + P(B) -  P(A\cap B)$$
    $$\frac {2}{3} = \frac {1}{3} + P(B) -  \frac {1}{6}$$
    $$P(B) = \frac{1}{2}$$

    Since, $$ P(A\cap B) = P(A).P(B)$$
    Therefore, the events are independent.
  • Question 2
    1 / -0
    A bag contains $$2$$ red, $$3$$ green and $$2$$ blue balls. $$1$$ ball is to be drawn randomly. What is the probability that the ball drawn is not blue?
    Solution
    There are $$2$$ red, $$3$$ green, and $$2$$ blue balls
    Total number of possibilities$$= 7$$
    The possibility of the ball not being blue$$=5$$
    $$\therefore$$ Probability = $$\dfrac{5}{7}$$
  • Question 3
    1 / -0
    A bag contains $$5$$ red balls and $$8 $$ blue balls. It also contains $$4$$ green and $$7$$ black balls. If a ball is drawn at random, then find the probability that it is not green.
    Solution
    Toatal number of favourable cases that a ball is not green $$= 20$$
    Total number of cases$$ = 24$$
    Probability = $$\dfrac{20}{24}$$ = $$\dfrac{5}{6}$$
  • Question 4
    1 / -0
    The probability that a card drawn from  a pack of $$52$$ cards will be a diamond or a king is -
    Solution
    $${\textbf{Step-1: Find sample space and favorable event.}}$$

                     $${\text{Let S be the sample space.}}$$

                     $$\Rightarrow n(S)=52$$

                     $${\text{Let A be the event getting a diamond or a king.}}$$

                     $${\text{There are 13 diamond cards including its king and other 3 king cards.}}$$ 

                     $${\text{so total favorable cards are,}}$$

                     $$\Rightarrow n(A)=13 + 3= 16$$

    $${\textbf{Step-2: Find probability.}}$$

                     $$\Rightarrow P(A)= \dfrac{n(A)}{n(S)}$$

                     $$\Rightarrow P(A)= \dfrac{16}{52}$$

                     $$\Rightarrow P(A)= \dfrac{4}{13}$$

    $${\textbf{Hence, option B is correct.}}$$
  • Question 5
    1 / -0
    If A and B are two events such that $$P(A\cup B)=P(A\cap B)$$, then the incorrect statement amongst the following statements is :
    Solution
    $$P(A\cup B)=P(A\cap B)$$
    $$\Rightarrow P(A)+P(B)-P(A\cap B)= P(A\cap B)$$
    $$\Rightarrow P(A)+P(B) = 2P(A\cap B)$$
  • Question 6
    1 / -0
    If events $$A$$ and $$B$$ are independent and $$P(A)=0.15, P(A\cup B)=0.45,$$ then $$P(B)$$ is:
    Solution
    $$P(A\cap B)=P(A)\times P(B)$$
    $$=0.15\times P(B)$$
    $$P(A\cup B)=P(A)+P(B)-P(A\cap B)$$
    $$0.45=0.15+P(B)-(0.15)\times P(B)$$
    $$=0.15+P(B)(1-0.15)$$
    $$=0.15+0.85P(B)$$
    $$\therefore 0.85P(B)=0.45-0.15=0.30$$
    $$\therefore P(B)=\dfrac {0.30}{0.85}=\dfrac {30}{85}=\dfrac {6}{17}$$
  • Question 7
    1 / -0
    A set $$A$$ is containing $$n$$ elements. A subset $$P$$ of $$A$$ is chosen at random. The set is reconstructed by replacing the elements of $$P$$. A subset $$Q$$ of $$A$$ is again chosen at random. The probability that $$P$$ and $$Q$$ have no common elements is:
    Solution
    Set $$A$$ has $$n$$ elements.  Number of subsets of $$A$$ = $$2^n$$.
    Number of ways of choosing a subset from $$A$$ = $${^{2^n}}C_{1}$$ ways = $$2^n$$ ways.
    So, number of ways of selecting two subsets from $$A$$ = $$2^n$$ $$ \times$$  $$2^n$$ = $$ 4^n$$ ways. -----------------(1)

    $$P$$ is a subset of $$A$$. 
    Let set $$P$$ has $$r$$ elements. 
    These $$r$$ elements are chosen from $$n$$ elements of set $$A$$ ($$r$$  varies from $$0$$ to $$n$$). 
    This can be done in $$\bf {^n}C_{r}$$ ways.

    Now given that $$P$$ and $$Q$$ has no common elements, $$P \cap Q = \emptyset$$.
    Hence the elements of $$Q$$ has to be chosen from $$n-r$$ elements. 
    This can be done in  $$^{n-r}C_{0} + ^{n-r}C_{1} + ................. + ^{n-r}C_{n-r}$$ ways = $$ 2^{n-r}$$ ways.

    Hence $$P$$ and $$Q$$ can be chosen in $$ ^{n}C_{r}\times 2^{n-r}$$ ways.
    Now $$r$$ can vary from $$0$$ to $$n$$.

    Hence total number of ways in which $$P$$ and $$Q$$ can be chosen such that they  dont have any common elements
    $$= \displaystyle \sum_{r=0}^{n} $$ $$^{n}C_{r} \times $$$$2^{n-r}$$

    $$= \displaystyle \sum_{r=0}^{n} $$$$^{n}C_{r} \times $$$$1^{r}\times 2^{n-r}$$

    $$=(1+2)^{n}=  3^n$$ -------------------------(2) (Using binomial expansion)

    Therefore,  probability that $$P$$ and $$Q$$ have no common elements 
    $$=\dfrac{3^n}{4^n} = {\big (\dfrac{3}{4}\big )}^n$$           (From (1) and (2))
  • Question 8
    1 / -0
    If events $$A$$ and $$B$$ are independent and $$P(A)=0.4, P(A\cup B)=0.6$$, then $$P(B)=$$
    Solution
    Given $$A$$ and $$B$$ are independent events, $$P(A)=0.4, P(A \cup B)=0.6$$. We have to find $$P(B)$$.
    Since $$A$$ and $$B$$ are independent events, $$P(A \cap B)=P(A) \cdot P(B)$$.
    We know that, $$P(A \cup B)=P(A)+P(B)-P(A \cap B)$$
    $$\Rightarrow P(A \cup B)=P(A)+P(B)-P(A) \cdot P(B)$$
    Substitute the values we get
    $$0.6=0.4+P(B)-0.4 \times P(B) $$
    $$\Rightarrow 0.6-0.4=(1-0.4)P(B)$$
    $$\Rightarrow 0.6P(B)=0.2$$
    $$\Rightarrow P(B)=\dfrac{0.2}{0.6}=\dfrac{2}{6}=\dfrac{1}{3}$$
    That is $$P(B)=\dfrac{1}{3}$$
  • Question 9
    1 / -0
    An unbiased normal coin is tossed n times. Let $$E_1$$: event that both heads and tails are present in n tosses. $$E_2$$:event that the coin shows up heads at most once. The value of n for which $$E_1$$ and $$E_2$$ are independent is
    Solution
    Let's denote head by 'H' and tails by 'T'
    $$P\left( { E }_{ 1 } \right) =1-\left\{ P\left( all\quad Ts \right) +P\left( all\quad Hs \right)  \right\} \\ \quad \quad =1-\left\{ \dfrac { 1 }{ { 2 }^{ n } } +\dfrac { 1 }{ { 2 }^{ n } }  \right\} =1-\dfrac { 1 }{ { 2 }^{ n-1 } } $$
    so $${ E }_{ 2 }=\left( n-1 \right) T\quad and\quad 1H\quad or\quad n\quad T\quad \\ \Rightarrow P\left( { E }_{ 2 } \right) =\left( \begin{matrix} n \\ 1 \end{matrix} \right) { 0.5 }^{ 1 }\times { 0.5 }^{ n-1 }\quad +\quad { 0.5 }^{ n }\\ \Rightarrow P\left( { E }_{ 2 } \right) =\dfrac { n+1 }{ { 2 }^{ n } } $$
    It can be seen very clearly that $${ E }_{ 1 }\cap { E }_{ 2 }=\left( n-1 \right) T\quad and\quad 1H$$
    $$\Rightarrow P\left( { E }_{ 1 }\cap { E }_{ 2 } \right) =\left( \begin{matrix} n \\ 1 \end{matrix} \right) { 0.5 }^{ 1 }\times { 0.5 }^{ n-1 }\\ =\dfrac { n }{ { 2 }^{ n } } $$
    now for independence $$P\left( { E }_{ 1 }\cap { E }_{ 2 } \right) =P\left( { E }_{ 1 } \right) P\left( { E }_{ 2 } \right) \\ \Rightarrow \dfrac { n }{ { 2 }^{ n } } =\left( 1-\dfrac { 1 }{ { 2 }^{ n-1 } }  \right) \left( \dfrac { n+1 }{ { 2 }^{ n } }  \right) \\ \Rightarrow n\times { 2 }^{ n-1 }=\left( n+1 \right) \left( { 2 }^{ n-1 }-1 \right) \\ \Rightarrow { 2 }^{ n-1 }-n-1=0\\ \Rightarrow n=3$$
  • Question 10
    1 / -0
    Events A and C are independent. If the probability relating A, B and C are $$P(A)=1/5, P(B)=1/6;$$ $$P (A \cap C) = 1/20. P(B \cup C)  = 3/8$$. Then
    Solution
    Given $$\displaystyle P\left( A \right) =\frac { 1 }{ 5 } ,P\left( B \right) =\frac { 1 }{ 6 } ,P\left( A\cap C \right) =\frac { 1 }{ 20 } \quad $$and $$\displaystyle \quad P\left( B\cup C \right) =\frac { 3 }{ 8 } $$
    since A and C are independent
    $$\Rightarrow \displaystyle P\left( A\cap C \right) =P\left( A \right) P\left( C \right) =\frac { 1 }{ 20 } \\ \displaystyle \Rightarrow P\left( C \right) =\frac { 1 }{ 20 } \times 5=\frac { 1 }{ 4 } \\ \Rightarrow P\left( C \right) =\dfrac { 1 }{ 4 } \\ Also \displaystyle \quad P\left( B\cup C \right) =\frac { 3 }{ 8 } \quad \quad \Rightarrow P\left( B \right) +P\left( C \right) -P\left( B\cap C \right) =\frac { 3 }{ 8 } \\ \displaystyle \Rightarrow P\left( B\cap C \right) =\frac { 1 }{ 6 } +\frac { 1 }{ 4 } -\frac{3}{8} =\frac { 1 }{ 24 } \\ \displaystyle \Rightarrow P\left( B\cap C \right) =P\left( B \right) P\left( C \right) =\frac { 1 }{ 24 } $$
    Which means events $$B$$ and $$C$$ are independent
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now