Self Studies

Probability Test - 26

Result Self Studies

Probability Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Suppose $$A$$ and $$B$$ are two events with $$P(A)=0.5$$ and $$P(A \cup B) =0.8$$. Let $$P(B)=p$$ if $$A$$ and $$B$$ are mutually exclusive and $$P(B)=q$$ if $$A$$ and $$B$$ are independent events, then the value of $$q/p$$ is
    Solution
    $$P(A)=0.5$$ and $$P(AB)=0.8$$
     When A and B are independent events, 
    $$ P(A\cap B) = P(A) \times P(B)$$ 
    $$\Rightarrow P(A) + P(B) - P(A \cup B) = 0.5 \times q $$
    $$\Rightarrow 0.5 + q -0.8 =0.5q $$
    $$\Rightarrow 0.5 q =0.3 $$
    $$\Rightarrow q =0.6 $$

    When A and B are mutually exclusive events 
    $$ P(A \cap B) =0 $$ 
    $$ P(A) + P(B) = P(A \cup B) $$
    $$ 0.5 + p =0.8 $$
    $$ \Rightarrow p =0.3 $$
    Hence the ratio of $$q$$ and $$p$$ is 2
  • Question 2
    1 / -0
    Let  A and B be two events. Suppose $$P(A)=0.4, P(B)=p$$, and $$P(A \cup B) = 0.7 $$. The value of $$p$$ for which A and B are independent is
    Solution
    Given, $$P(A)=0.4,P(B)=p$$, and $$P(A\;U\;B)=0.7$$ 
    A and B are independent events.
    $$ \Rightarrow P(A\;U\;B)=P(A) +P(B) -P(A) \times P(B) $$
    $$0.7 = 0.4 + p - 0.4 p$$
    $$p = \displaystyle \frac{1}{2} $$
  • Question 3
    1 / -0
    If $$P (A \cup B) = \dfrac{2}{3} ,  P (A \cap B) = \dfrac{1}{6} $$  and $$ P(A) = \dfrac{1}{3}$$ then -
    Solution
    Given: $$P\left( A\bigcup { B }  \right) =\cfrac { 2 }{ 3 } $$
    $$P\left( A\bigcap { B }  \right) =\cfrac { 1 }{ 6 } $$
    $$P\left( A \right) =\cfrac { 1 }{ 3 } $$
    Using the formula:
    $$P\left( A\bigcup { B }  \right) =P(A)+P(B)-P\left( A\bigcap { B }  \right) $$
    $$\therefore P(B)=P\left( A\bigcup { B }  \right) -P(A)+P\left( A\bigcap { B }  \right) $$
    $$=\cfrac { 2 }{ 3 } -\cfrac { 1 }{ 3 } +\cfrac { 1 }{ 6 } $$
    $$=\cfrac { 4-2+1 }{ 6 } =\cfrac { 3 }{ 6 } =\cfrac { 1 }{ 2 } $$
    $$\therefore P(B)=\cfrac { 1 }{ 2 } \quad P(A)\neq P(B)$$
    and $$P(A)=\cfrac { 1 }{ 3 } $$
    Thus A and B are independent events.
  • Question 4
    1 / -0
    If odds against solving a question by three students are 2:1, 5:2 and 5:3 , respectively, then probability that the question is solved only by one student is
    Solution
    Given, $$P(A)=\dfrac{1}{3}, P(B)=\dfrac{2}{7}, P(C)=\dfrac{3}{8}$$

    Probability that the question is solved only by one student is
    $$=P(A)\times P(B)^c\times P(C)^c+P(A)^c\times P(B)\times P(C)^c + P(A)^c\times P(B)^c\times P(C)$$
    $$=\left(\dfrac{1}{3}\times\dfrac{5}{7}\times\dfrac{5}{8}\right) +\left(\dfrac{2}{3}\times\dfrac{2}{7}\times\dfrac{5}{8}\right) +\left(\dfrac{2}{3}\times\dfrac{5}{7}\times\dfrac{3}{8}\right) = \dfrac{25}{56}$$
  • Question 5
    1 / -0
    If $$P( A \cup B )=\displaystyle\frac{3}{4}$$ and $$P( \bar A)= \displaystyle\frac{2}{3}$$, then find the value of $$P( \bar A \cap B )$$.
    Solution
    Since $$ \bar A \cap B $$ and A are mutually exclusive events such that 
    $$ A \cup B =  (\bar A \cap B) \cup A$$
    or $$  P( A \cup B )=P( \bar A \cap B )+P(A)$$ 
    or $$\displaystyle\frac{3}{4}=P(\bar A \cap B ) + 1 - \displaystyle\frac{2}{3}$$
    or $$P(\bar A \cap B ) = \displaystyle\frac{5}{12}$$
  • Question 6
    1 / -0
    A bag contains $$3$$ white, $$3$$ black, and $$2$$ red balls. One by one three balls are drawn without replacing them, then find the probability that the third ball is red.
    Solution
    $${\textbf{Step -1: Find the probabilities of one by one 3 balls are drawn replacing them.}}$$
                     $${\text{Let R stand for drawing red ball, B for black ball and W for drawing white ball.}}$$
                     $${\text{Then, the probabilities that one by one 3 balls are drawn replacing them is,}}$$
                     $$\Rightarrow P(WWR)= \dfrac{3}{8} \times \dfrac{2}{7} \times \dfrac{2}{6}= \dfrac{3 \times 2 \times 2}{8 \times 7 \times 6}=\dfrac{2}{56}$$

                     $$\Rightarrow P(BBR)= \dfrac{3}{8} \times \dfrac{2}{7} \times \dfrac{2}{6}= \dfrac{3 \times 2 \times 2}{8 \times 7 \times 6}=\dfrac{2}{56}$$

                     $$\Rightarrow P(WBR)= \dfrac{3}{8} \times \dfrac{3}{7} \times \dfrac{2}{6}= \dfrac{3 \times 3 \times 2}{8 \times 7 \times 6}=\dfrac{3}{56}$$

                     $$\Rightarrow P(BWR)= \dfrac{3}{8} \times \dfrac{3}{7} \times \dfrac{2}{6}= \dfrac{3 \times 3 \times 2}{8 \times 7 \times 6}=\dfrac{3}{56}$$

                     $$\Rightarrow P(WRR)= \dfrac{3}{8} \times \dfrac{2}{7} \times \dfrac{1}{6}= \dfrac{3 \times 2 \times 1}{8 \times 7 \times 6}=\dfrac{1}{56}$$

                     $$\Rightarrow P(BRR)= \dfrac{3}{8} \times \dfrac{2}{7} \times \dfrac{1}{6}= \dfrac{3 \times 2 \times 1}{8 \times 7 \times 6}=\dfrac{1}{56}$$

                     $$\Rightarrow P(RWR)= \dfrac{2}{8} \times \dfrac{3}{7} \times \dfrac{1}{6}= \dfrac{2 \times 3 \times 1}{8 \times 7 \times 6}=\dfrac{1}{56}$$

                     $$\Rightarrow P(RBR)= \dfrac{2}{8} \times \dfrac{3}{7} \times \dfrac{1}{6}= \dfrac{2 \times 3 \times 1}{8 \times 7 \times 6}=\dfrac{1}{56}$$
    $${\textbf{Step -2: Find probability that the third ball is red.}}$$
                     $${\text{Probability that the third ball is red}}$$ $$=\dfrac{2}{56}+ \dfrac{2}{56}+ \dfrac{3}{56} + \dfrac{3}{56} + \dfrac{1}{56} + \dfrac{1}{56} + \dfrac{1}{56} + \dfrac{1}{56}$$

                     $${\text{Probability that the third ball is red}}$$ $$=\dfrac{1}{4}$$
    $${\textbf{Thus, option A is correct.}}$$
  • Question 7
    1 / -0
    Let $$A$$ and $$B$$ be two events such that $$\displaystyle P(\overline{A\cup B})=\frac{1}{6},P(A\cap B)=\frac{1}{4}$$ and $$P(\bar{A})=\dfrac{1}{4}$$ where $$\bar{A}=$$ complementary of event $$A$$. Then $$A$$ and $$B$$ are
    Solution
    $$\displaystyle P\left( \overline { A\cup B }  \right) =\frac { 1 }{ 6 } ;P\left( A\cap B \right) =\frac { 1 }{ 4 } $$
    $$\displaystyle P\left( \overline { A }  \right) =\frac { 1 }{ 4 } \Rightarrow P\left( A \right) =\frac { 3 }{ 4 } $$
    Now $$P\left( \overline { A\cup B }  \right) =1-P\left( A\cup B \right) =1-P\left( A \right) -P\left( B \right) +P\left( A\cap B \right) $$
    $$\displaystyle \Rightarrow \frac { 1 }{ 6 } =\frac { 1 }{ 4 } -P\left( B \right) +\frac { 1 }{ 4 } \Rightarrow P\left( B \right) =\frac { 1 }{ 3 } $$
    Since $$P\left( A\cap B \right) =P\left( A \right) \times P\left( B \right) $$ and $$P\left( A \right) \neq P\left( B \right) $$, $$A$$ and $$B$$ are independent but not equally likely.
  • Question 8
    1 / -0
    For any two independent events $${ E }_{ 1 }$$ and $${ E }_{ 2 },P\left\{ \left( { E }_{ 1 }\cup { E }_{ 2 } \right) \cap \left( \overline { { E }_{ 1 } }  \right) \cap \left( \overline { { E }_{ 2 } }  \right)  \right\} $$ is 
    Solution
    Since $$\overline { { E }_{ 1 } } \cap \overline { { E }_{ 2 } } =\overline { { E }_{ 1 }\cup { E }_{ 2 } } $$ and $$\left( { E }_{ 1 }\cup { E }_{ 2 } \right) \cap \left( \overline { { E }_{ 1 }\cup { E }_{ 2 } }  \right) =\phi $$
    $$\displaystyle \therefore P\left[ \left( { E }_{ 1 }\cup { E }_{ 2 } \right) \cap \left( \overline { { E }_{ 1 } } \cap \overline { { E }_{ 2 } }  \right)  \right] =P\left( \phi  \right) =0<\frac { 1 }{ 4 } $$
  • Question 9
    1 / -0
    $$A$$ and $$B$$ are two events where $$P(A) = 0.25$$ and $$P(B) = 0.5$$. The probability of both happening together is $$0.14$$. The probability of both $$A$$ and $$B$$ not happening is
    Solution
    $$P\left( A\cap B \right) =0.14\quad \\ \because \left( { A }^{ c }\cap { B }^{ c } \right) =1-\left( A\cup B \right) \\ Then\\ P\left( { A }^{ c }\cap { B }^{ c } \right) =1-P\left( A\cup B \right) \\ \quad \quad \quad \quad \quad \quad \quad =1-\left\{ P\left( A \right) +P\left( B \right) -P\left( A\cap B \right)  \right\} $$
    Putting the given values
    $$P\left( { A }^{ c }\cap { B }^{ c } \right) =1-\left\{ 0.25+0.5-0.14 \right\} \\ \quad \quad \quad \quad \quad \quad \quad =0.39$$
  • Question 10
    1 / -0
    If $$\displaystyle P\left ( B \right )= \frac{3}{4}, P\left ( A\cap B\cap \bar{C} \right )=\frac{1}{3}$$ and $$\displaystyle P\left ( \bar{A}\cap B\cap \bar{C} \right )=\frac{1}{3}$$ then $$\displaystyle P\left ( B\cap C \right )$$ is
    Solution
    $$\displaystyle P\left( B\cap C \right) =P\left( B \right) -\left\{ P\left( A\cap B\cap { C }^{ c } \right) +P\left( { A }^{ c }\cap B\cap { C }^{ c } \right)  \right\} $$
    $$ \Rightarrow P\left( B\cap C \right) =\displaystyle \frac { 3 }{ 4 } -\left\{ \frac { 1 }{ 3 } +\frac { 1 }{ 3 }  \right\} $$
    $$ \Rightarrow P\left( B\cap C \right) =\displaystyle \frac { 1 }{ 12 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now