Self Studies

Probability Test - 27

Result Self Studies

Probability Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the probability of $$A$$ to fail in an examination is $$\displaystyle \frac {1}{5}$$ and that of $$B$$ is $$\displaystyle \frac {3}{10}$$ then the probability that either $$A$$ or $$B$$ fails is
    Solution
    Let E be the event that either A or B fails.Also let $${ A }^{ F }$$ and $${ B }^{ F }$$ be the event of failure of A and B respectively.
    Then $$P\left( E \right) =P\left( { A }^{ F }\cup { B }^{ F } \right) =P\left( { A }^{ F } \right) +P\left( { B }^{ F } \right) -P\left( { A }^{ F }\cap { B }^{ F } \right) \\ \Rightarrow P\left( E \right) =\dfrac { 1 }{ 5 } +\dfrac { 3 }{ 10 } -\left( \dfrac { 1 }{ 5 } \times \dfrac { 3 }{ 10 }  \right) $$
    since the failing of A and B are independent.
    $$\Rightarrow P\left( E \right) =\dfrac { 10+15-3 }{ 50 } =\dfrac { 22 }{ 50 } =\dfrac { 11 }{ 25 }  $$
  • Question 2
    1 / -0
    Three numbers are chosen at random without replacement from $$1, 2, 3, ... , 10$$. The probability that the minimum of the chosen numbers is $$4$$ or their maximum is $$8$$, is
    Solution
    $$P$$ (min $$4$$ or max $$8$$) = P(min $$4$$) + P(max $$8$$) - P(min $$4$$ and max $$8$$)
    P(min $$4$$)  $$= 6C_2/10C_3$$
    P(max 8) $$ = 7C_2/10C_3$$
    P(min $$4$$ and max $$8$$)$$ = 3C_1/10C_3$$

    $$P = 15/120 + 21/120 - 3/120 = 11/40$$
  • Question 3
    1 / -0
    Let $$A$$ and $$B$$ be two independent events such that $$\displaystyle P(A) = \frac {1}{5}, P(A \cup B) = \frac {7}{10}$$. Then $$\displaystyle P (\overline B)$$ is equal to
    Solution
    $$\because P\left( A\cup B \right) =P\left( A \right) +P\left( B \right) -P\left( A\cap B \right) \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =P\left( A \right) +P\left( B \right) -P\left( A \right) P\left( B \right) $$      since A and B are independent
    putting the values
    $$\Rightarrow \dfrac { 7 }{ 10 } =\dfrac { 1 }{ 5 } +P\left( B \right) -\dfrac { P\left( B \right)  }{ 5 } \\ \Rightarrow \dfrac { 4P\left( B \right)  }{ 5 } =\dfrac { 7 }{ 10 } -\dfrac { 1 }{ 5 } =\dfrac { 1 }{ 2 } \\ \Rightarrow P\left( B \right) =\dfrac { 5 }{ 8 } \\ \Rightarrow P\left( { B }^{ c } \right) =1-P\left( B \right) =1-\dfrac { 5 }{ 8 } =\dfrac { 3 }{ 8 } $$
  • Question 4
    1 / -0
    Three numbers are chosen at random without replacement from $${1,2,...10}$$. The probability that the minimum of the chosen numbers is $$3$$, or their maximum is $$7$$, is
    Solution
    Let $$A(B)$$ denote the event that minimum (maximum) number on the chosen tickets is $$3(7)$$.
    We have 
    $$P(A)=P($$ choosing $$3$$ and two other numbers from $$4$$ to $$10)$$
    $$\displaystyle =\frac { _{  }^{ 7 }{ { C }_{ 2 } } }{ _{  }^{ 10 }{ { C }_{ 2 } } } =\frac { 7\times 6\times 3 }{ 10\times 9\times 8 } =\frac { 7 }{ 40 } $$
    $$P(B)=P($$ choosing $$7$$ and choosing two other numbers from $$1$$ to $$6)$$
    $$\displaystyle =\frac { _{  }^{ 6 }{ { C }_{ 2 } } }{ _{  }^{ 10 }{ { C }_{ 3 } } } =\frac { 6\times 5\times 3 }{ 10\times 9\times 7 } =\frac { 1 }{ 8 } $$
    $$P\left( A\cap B \right) =P($$ choosing $$3$$ and $$7$$ and one other number from $$4$$ to $$6)$$
    $$\displaystyle =\frac { 3 }{ _{  }^{ 10 }{ { C }_{ 3 } } } =\frac { 3\times 3\times 3 }{ 10\times 9\times 8 } =\frac { 1 }{ 40 } $$
    $$\displaystyle \therefore P\left( A\cup B \right) =P\left( A \right) +P\left( B \right) -P\left( A\cap B \right) =\frac { 11 }{ 40 } $$
  • Question 5
    1 / -0
    For two events $$A$$ and $$B$$ if $$\displaystyle P\left( A \right) =P\left( \frac { A }{ B }  \right) =\frac { 1 }{ 4 } $$ and $$\displaystyle P\left( \frac { B }{ A }  \right) =\frac { 1 }{ 2 } $$, then
    Solution
    $$\displaystyle P\left( A \right) =P\left( \frac { A }{ B }  \right) =\frac { P\left( A\cap B \right)  }{ P\left( B \right)  } \Rightarrow P\left( A\cap B \right) =P\left( A \right) P\left( B \right) $$
    Thus, $$A$$ and $$B$$ are independent 
    Also, $$\displaystyle P\left( \frac { A' }{ B }  \right) =\frac { P\left( A'\cap B \right)  }{ P\left( B \right)  } =\frac { P\left( B \right) -P\left( A\cap B \right)  }{ P\left( B \right)  } $$
    $$\displaystyle =1-P\left( \frac { A }{ B }  \right) =1-\frac { 1 }{ 4 } =\frac { 3 }{ 4 } $$
  • Question 6
    1 / -0
    If two events $$A$$ and $$B$$ are such that $$P\left( A' \right) =0.3,P\left( B \right) =0.4$$ and $$P\left( AB' \right) =0.5$$, then $$\displaystyle P\left( \frac { B }{ \left( A\cup B' \right)  }  \right) =$$
    Solution
    $$P\left( A \right) =1-P\left( A' \right) =1-0.3=0.7,P\left( B \right) =0.4$$
    We know that 
    $$P\left( A \right) =P\left( A\cap B \right) +P\left( A\cap B' \right) \Rightarrow 0.7=P\left( A\cap B \right) =0.5\\ \Rightarrow P\left( A\cap B \right) =0.7-0.5=0.2\\ P\left( A\cup B' \right) =P\left( A \right) +P\left( B' \right) -P\left( A\cap B' \right) =0.7+\left( 1-0.4 \right) -0.5=0.8$$
    Next $$\displaystyle P\left( \frac { B }{ \left( A\cup B' \right)  }  \right) =\frac { P\left[ B\cap \left( A\cap B' \right)  \right]  }{ P\left( A\cap B' \right)  } $$
    From set theory $$B\cap \left( A\cap B' \right) =\left( B\cap A \right) \cup \left( B\cap B' \right) =\left( B\cap A \right) \cup \phi =B\cap A$$
    $$\therefore$$ Required probability $$\displaystyle =\frac { P\left( A\cap B \right)  }{ P\left( A\cup B' \right)  } =\frac { 0.2 }{ 0.8 } =\frac { 1 }{ 4 } $$
  • Question 7
    1 / -0
    If $$P\left( { E }_{ 1 } \right) =0.2,P\left( { E }_{ 2 } \right) =0.4$$ and $$P\left( { E }_{ 3 } \right) =0.6$$ and $${ E }_{ 1 },{ E }_{ 2 }$$ and $${ E }_{ 3 }$$ are independent events, then the probability that at least one of these events $${ E }_{ 1 },{ E }_{ 2 }$$ and $${ E }_{ 3 }$$ occurs is
    Solution
    $$P($$ at least one event $${ E }_{ 1 },{ E }_{ 2 },{ E }_{ 3 }$$ occurs $$)$$
    $$=P\left( { E }_{ 1 }\cup { E }_{ 2 }\cup { E }_{ 3 } \right) \\ =P\left( { E }_{ 1 } \right) +P\left( { E }_{ 2 } \right) +P\left( { E }_{ 3 } \right) -P\left( { E }_{ 1 }\cap { E }_{ 2 } \right) -P\left( { E }_{ 2 }\cap { E }_{ 3 } \right) \\ -P\left( { E }_{ 3 }\cap { E }_{ 1 } \right) +P\left( { E }_{ 1 }\cap { E }_{ 2 }\cap { E }_{ 3 } \right) \\ =P\left( { E }_{ 1 } \right) +P\left( { E }_{ 2 } \right) +P\left( { E }_{ 3 } \right) -P\left( { E }_{ 1 } \right) P\left( { E }_{ 2 } \right) -P\left( { E }_{ 2 } \right) P\left( { E }_{ 3 } \right) \\ -P\left( { E }_{ 3 } \right) P\left( { E }_{ 1 } \right) +P\left( { E }_{ 1 } \right) P\left( { E }_{ 2 } \right) P\left( { E }_{ 3 } \right) \\ =0.2+0.4+0.6-\left( 0.2 \right) \left( 0.4 \right) -\left( 0.4 \right) \left( 0.6 \right) -\left( 0.6 \right) \left( 0.2 \right) \\ +\left( 0.2 \right) \left( 0.4 \right) \left( 0.6 \right) =0.808$$
  • Question 8
    1 / -0
    Four cards are drawn at a time from a pack of $$52$$ playing cards. Find the probability of getting all the $$4$$ cards of the same suit.
    Solution
    Since $$4$$ cards can be drawn at a time from a pack of $$52$$ cards is $$^{ 52 }{ { C }_{ 4 } }$$ ways,
    total number of elementary events $$=^{ 52 }{ { C }_{ 4 } }$$
    Consider the following events:
    $$A:$$ Getting all spade cards;
    $$B:$$ Getting all club cards;
    $$C:$$ Getting all diamond cards;
    $$D:$$ Getting all hearts cards.
    Then $$A,B,C$$ and $$D$$ are mutually exclusive events such that
    $$\displaystyle P\left( A \right) =\frac { _{  }^{ 13 }{ { C }_{ 4 } } }{ ^{ 52 }{ { C }_{ 4 } } } ,P\left( B \right) =\frac { _{  }^{ 13 }{ { C }_{ 4 } } }{ ^{ 52 }{ { C }_{ 4 } } } ,P\left( C \right) =\frac { _{  }^{ 13 }{ { C }_{ 4 } } }{ ^{ 52 }{ { C }_{ 4 } } } $$ and $$\displaystyle P\left( D \right) =\frac { _{  }^{ 13 }{ { C }_{ 4 } } }{ ^{ 52 }{ { C }_{ 4 } } } $$
    Now required probability
    $$=P\left( A\cup B\cup C\cup D \right) $$
    $$=P\left( A \right) +P\left( B \right) +P\left( C \right) +P\left( D \right) $$
    $$\displaystyle =4\left( \frac { _{  }^{ 13 }{ { C }_{ 4 } } }{ ^{ 52 }{ { C }_{ 4 } } }  \right) =\frac { 44 }{ 4165 } $$
  • Question 9
    1 / -0
    The probability that the least one of the events $$A$$ and $$B$$ occur is $$0.6$$, if $$A$$ and $$B$$ occur simultaneously with probability $$0.2$$, then $$P(\bar { A })+ P(\bar { B } )$$, where $$\bar A$$ and $$\bar B$$ are complements of $$A$$ and $$B$$ respectively is equal to
    Solution

  • Question 10
    1 / -0
    $$A$$ and $$B$$ are two independent events. The probability that both $$A$$ and $$B$$ occur is $$1/6$$ and the probability that at least one of them occurs is $$\cfrac{2}{3}$$. The probability of the occurrence of $$A=$$............ if $$P(A)=2P(B)$$.
    Solution
    Here given $$P(A\cap B) = \cfrac{1}{6}, P(A\cup B) = \cfrac{2}{3}, P(A)=2P(B)$$
    Thus using $$P(A\cup B) = P(A)+P(B)-P(A\cap B)$$
    $$\Rightarrow \cfrac{2}{3}=P(A)+\cfrac{1}{2}P(A)-\cfrac{1}{6}\Rightarrow P(A) = \cfrac{5}{9}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now