Self Studies

Probability Test - 45

Result Self Studies

Probability Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For any two independent events $$E_{1}$$ and $$E_{2}$$ in a space $$S, P[(E_{1} \cup E_{2})\cap (E_{1}\cap E_{2})]$$ is equal to
    Solution
    $$P(E)=P[\left( { E }_{ 1 }\cup { E }_{ 2 } \right) \cap \left( { E }_{ 1 }\cap { E }_{ 2 } \right) ]$$

    Using De Morgans law 

    $$\left( { E }_{ 1 }\cap { E }_{ 2 } \right) =\left( { E }_{ 1 }^{ \prime  }\cup { E }_{ 2 }^{ \prime  } \right) ={ \left( { E }_{ 1 }\cup { E }_{ 2 } \right)  }^{ \prime  }$$

    $$ \Rightarrow P(E)=P[\left( { E }_{ 1 }\cup { E }_{ 2 } \right) \cap { \left( { E }_{ 1 }\cup { E }_{ 2 } \right)  }^{ \prime  }]$$

    Now $$\left( A\cap A\prime  \right) $$ is always $$\phi$$ set 

    $$\Rightarrow P(E)=\phi =0$$

    Out of the options

    $$ \Rightarrow P(E)\le \dfrac { 1 }{ 4 } $$

    So option $$A$$ is correct.

  • Question 2
    1 / -0
    If $$A$$ and $$B$$ are two events, then, $$1+P\left( A\cap B \right) -P\left( B \right) -P\left( A \right) $$ is equal to
    Solution
    We know that for two events,
    $$P\left( A\cup B \right) =P\left( A \right) +P\left( B \right) -P\left( A\cap B \right) $$
    $$\Rightarrow P\left( A \right) +P\left( B \right) =P\left( A\cup B \right) +P\left( A\cap B \right) $$
    $$1+P\left( A\cap B \right) -P\left( B \right) -P\left( A \right) $$
    $$=1+P\left( A\cap B \right) -\left( P\left( B \right) +P\left( A \right)  \right)$$
    $$=1+P\left( A\cap B \right) -\left( P\left( A\cup B \right) +P\left( A\cap B \right)  \right) $$
    $$=1+P\left( A\cap B \right) -P\left( A\cup B \right) -P\left( A\cap B \right) $$
    $$=1-P\left( A\cup B \right) =P\overline { \left( A\cup B \right)  } =P\left( \overline { A } \cap \overline { B }  \right) $$
  • Question 3
    1 / -0
    If the events $$A$$ and $$B$$ are independent and if $$P(\overline {A}) = \dfrac {2}{3}, P(\overline {B}) = \dfrac {2}{7}$$, then $$P(A\cap B)$$ is equal to
    Solution
    Given, $$P(\overline {A}) = \dfrac {2}{3}$$

    Therefore, $$P(A) = 1 - P(\overline {A}) = 1- \dfrac {2}{3} = \dfrac {1}{3}$$

    and $$P(\overline {B}) = \dfrac {2}{7}$$

    $$\therefore P(B) = 1 - P(\overline {B}) = 1 -\dfrac {2}{7} = \dfrac {5}{7}$$

    Given, $$A$$ and $$B$$ are independent events.

    Thus $$ P(A\cap B) = P(A)\cdot P(B)$$

    $$= \dfrac {1}{3}\cdot \dfrac {5}{7} = \dfrac {5}{21}$$
  • Question 4
    1 / -0
    The probabilities that Mr. $$A$$ and Mr. $$B$$ will die within a year are $$\dfrac { 1 }{ 2 } $$ and $$\dfrac { 1 }{ 3 } $$ respectively, then the probability that only one of them will be alive at the end of the year, is
    Solution
    Let $$A$$ be the event that Mr. $$A$$ will die within a year and $$B$$ be the event that Mr. $$B$$ will die within a year. Then, required probability 
    $$=P\left[ \left( A\quad will\quad die\quad and\quad B\quad alive \right) \quad or\quad \left( B\quad will\quad die\quad and\quad A\quad alive \right)  \right] $$
    $$=P\left[ \left( A\cap { B }^{ ' } \right) \cup \left( B\cap { A }^{ ' } \right)  \right] $$
    $$=P\left( A\cap { B }^{ ' } \right) +P\left( B\cap { A }^{ ' } \right)$$     [$$\because$$ these events are mutually exclusive]
    $$=P\left( A \right) \cdot P\left( { B }^{ ' } \right) +P\left( B \right) \cdot P\left( { A }^{ ' } \right) $$     [$$\because A$$ and $$B$$ are independent]
    $$=\dfrac { 1 }{ 2 } \left( 1-\dfrac { 1 }{ 3 }  \right) +\dfrac { 1 }{ 3 } \left( 1-\dfrac { 1 }{ 2 }  \right) $$
    $$=\dfrac { 2 }{ 6 } +\dfrac { 1 }{ 6 } =\dfrac { 3 }{ 6 } =\dfrac { 1 }{ 2 } $$
  • Question 5
    1 / -0
    The probabilities of solving a problem by three students $$A,B$$ and $$C$$ are $$\cfrac { 1 }{ 2 } ,\cfrac { 3 }{ 4 } $$ and $$\cfrac { 1 }{ 4 } $$ respectively. The probability that the problem will be solved is
    Solution
    Given, $$P(A)=\cfrac { 1 }{ 2 } ,P(B)=\cfrac { 3 }{ 4 } ,P(C)=\cfrac { 1 }{ 4 } $$
    $$\Rightarrow P(\overline { A } )=\cfrac { 1 }{ 2 } ,P(\overline { B } )=\cfrac { 1 }{ 4 } ,P(\overline { C } )=\cfrac { 3 }{ 4 } $$
    $$\therefore$$ Required probability $$=1-P(\overline { A } \cap \overline { B } \cap \overline { C } )=1-\cfrac { 1 }{ 2 } \times \cfrac { 1 }{ 4 } \times \cfrac { 3 }{ 4 } =\cfrac { 29 }{ 32 } $$
  • Question 6
    1 / -0
    Out of $$50$$ tickets numbered $$00, 01, 02, ...., 49$$ one ticket is drawn randomly, the probability of the ticket having the product of its digits $$7$$ given that the sum of the digits is $$8$$, is
    Solution
    Total number of cases $$= ^{50}C_{1} = 50$$
    Let $$A$$ be the event of selecting ticket with sum of digits $$'8'$$.
    Favourable cases to $$A$$ are $$\left \{08, 17, 26, 35, 44\right \}$$.
    Let $$B$$ be the event of selecting ticket with product of its digits $$'7'$$
    Favourable cases to $$B$$ is only $$\left \{17\right \}$$.
    Now, $$P(B/A) = \dfrac {P(A\cap B)}{P(A)}$$ $$= \dfrac {1/50}{5/50} = \dfrac {1}{5}$$
  • Question 7
    1 / -0
    If $$A$$ and $$B$$ are two events such that $$P(A) = \dfrac {3}{4}$$ and $$P(B) = \dfrac {5}{8}$$, then
    Solution
    $$A\subset A\cup B\Rightarrow P(A) \leq P(A\cup B)$$
    $$\Rightarrow P(A\cup B) \geq 3/4$$
    Also, $$P(A\cap B) = P(A) + P(B) - P(A\cup B) \geq P(A) + P(B) - 1$$
    $$= \dfrac {3}{4} + \dfrac {5}{8} - 1 = \dfrac {3}{8}$$
    Now, $$A\cap B\subset B\Rightarrow P(A \cap B)\leq P(B) = \dfrac {5}{8}$$
    $$\therefore \dfrac {3}{8}\leq P(A\cap B) \leq \dfrac {5}{8} .... (i)$$
    Next $$P(A\cap B') = P(A) - P(A\cap B)$$
    $$\Rightarrow \dfrac {3}{4} - \dfrac {5}{8}\leq P(A\cap B') \leq \dfrac {3}{4} - \dfrac {3}{8}$$
    $$\Rightarrow \dfrac {1}{8} \leq P(A\cap B') \leq \dfrac {3}{8}$$
    $$\because P(A' \cap B) = P(B) - P(A\cap B)$$
    $$\therefore P(A\cap B) = P(B) - P(A'\cap B')$$ [Using Eq. (i)]
    $$\Rightarrow \dfrac {3}{8}\leq P(B) - P(A'\cap B)\leq \dfrac {5}{8}$$
    $$\Rightarrow 0\leq P(A'\cap B)\leq \dfrac {1}{4}$$.
  • Question 8
    1 / -0
    If $$P(A) = 65, P(B) = 80$$, then $$P(A\cap B)$$ lies in the interval
    Solution
    $$P(A\cap B) \leq min \left \{P(A), P(B)\right \} = min\left \{.65, .80\right \} = 0.65$$

    $$\therefore P(A\cap B) \leq .65$$

    Also, $$P(A\cap B) = P(A) + P(B) - P(A\cup B)$$

    $$\geq .65 + .80 - 1 = 0.45$$

    $$\therefore 0.45\leq P(A \cap B) \leq 0.65$$.
  • Question 9
    1 / -0
    Let $$A$$ and $$B$$ be two events such that $$P (A \cup B) = P(A) + P(B)- P (A) P(B)$$. If $$0 < P(A) < 1$$ and $$0 < P (B) < 1$$, then $$P(A \cup B)'$$ is equal to
    Solution
    Given, $$P (A \cup B) = P(A) + P (B) - P(A) P(B)$$
    Therefore, $$  P (A \cup B)' = 1 - P (A \cup B)$$
    $$= 1 - [P (A) + P(B) - P(A) P(B)]$$
    $$= 1 [1- P (A)] - P (B) [1 - P(A)]$$
    $$= [1 - P (A)] [1 - P(B)]$$
  • Question 10
    1 / -0
    If the probability of $$x$$ to fail in the examination is $$0.3$$ and that for $$Y$$ is $$0.2$$, then the probability that either $$X$$ or $$Y$$ fail in the examination is
    Solution
    Given, $$P(x)=0.3,P(y)=0.2$$
    Now, $$P(x\cup y)=P(x)+P(y)-P(x\cap y)$$
    Since, these are independent events, so
    $$P(x\cap y)=P(x).P(y)$$
    Thus, the required probability is $$0.3+0.2-0.06$$ $$=0.44$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now