It is given that
$$P\left( A\cap \overline { B } \right) +P\left( \overline { A } \cap B \right) =p,P\left( B\cap \overline { C } \right) +P\left( \overline { B } \cap C \right) =p,P\left( A\cap \overline { C } \right) +P\left( \overline { A } \cap C \right) =p$$
and $$P\left( A\cap B\cap C \right) ={ p }^{ 2 }$$
We have to find $$P\left( A\cup B\cup C \right) $$
Now, $$P\left( A\cap \overline { B } \right) +P\left( \overline { A } \cap B \right) =p\Rightarrow P\left( A \right) +P\left( B \right) -2P\left( A\cap B \right) =p$$ ...(1) Similarly $$P\left( B\cap \overline { C } \right) +P\left( \overline { B } \cap C \right) =p\Rightarrow P\left( B \right) +P\left( C \right) -2P\left( B\cap C \right) =p$$ ...(2)
and, $$P\left( A\cap \overline { C } \right) +P\left( \overline { A } \cap C \right) =p\Rightarrow P\left( A \right) +P\left( C \right) -2P\left( A\cap C \right) =p$$ ...(3)
Adding (1),(2) and (3), we get $$2\left[ P\left( A \right) +P\left( B \right) +P\left( C \right) -P\left( A\cap B \right) -P\left( B\cap C \right) -P\left( A\cap C \right) \right] =3p$$
$$\displaystyle \Rightarrow P\left( A \right) +P\left( B \right) +P\left( C \right) -P\left( A\cap B \right) -P\left( B\cap C \right) -P\left( A\cap C \right) =\frac { 3p }{ 2 } $$
So, required probability $$P\left( A\cup B\cup C \right) =P\left( A \right) +P\left( B \right) +P\left( C \right) -P\left( A\cap B \right) -P\left( B\cap C \right) $$
$$\displaystyle -P\left( A\cap C \right) +P\left( A\cap B\cap C \right) =\frac { 3p }{ 2 } +{ p }^{ 2 }=\frac { 3p+2{ p }^{ 2 } }{ 2 } $$