Self Studies

Probability Test - 53

Result Self Studies

Probability Test - 53
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In two mutually exclusive events of $$ P (A\cup B) $$is
    Solution

  • Question 2
    1 / -0
    Two events $$A$$ and $$B$$ are said to be mutually independent, if:
    Solution
    $$P(A)=1-P(\overline { A } );P(B)=1-P(\overline { B } )$$
    $$P(\overline { AB } )=P(\overline { A } )\times P(\overline { B } )=\left[ 1-P( { A } ) \right] \left[ 1-P( { B } ) \right] $$
  • Question 3
    1 / -0
    An event X can take place in conjunction with any one of the mutually exclusive and exhaustive events A, B and C. If A, B,C are equiprobable and the probability of X is 5/12 and the probability of X taking place when A has happened is 3/8 while it is 1/4 when B has taken place, then the probability of X taking place on conjunction with C is
    Solution
    Probability of A = Probability of B = Probability of C = $$\dfrac { 1 }{ 3 } $$
    Probability of X = $$P(X)=\dfrac { 5 }{ 12 }=P(A)*P(\dfrac { X }{ A } )+P(B)*P(\dfrac { X }{ B } )+P(C)*P(\dfrac { X }{ C } )=\dfrac { 1 }{ 3 } *\dfrac { 3 }{ 8 } +\dfrac { 1 }{ 3 } *\dfrac { 1 }{ 4 } +\dfrac { 1 }{ 3 } *P(\dfrac { X }{ C })$$

    Hence, $$P(\dfrac { X }{ C })=\dfrac { 5 }{ 8 } $$
    Hence, (a) is correct.
  • Question 4
    1 / -0
    For three events $$A,B$$ and $$C,P($$exactly one of the events $$A$$ or $$B$$ occurs$$)=P($$exactly one of the vents $$B$$ or $$C$$ occurs$$)=P($$exactly one of the events $$C$$ or $$A$$ occurs$$)=p$$ and $$P($$all the three events occur simultaneously$$)={ p }^{ 2 }$$, where $$\displaystyle 0<p<\frac { 1 }{ 2 } $$.
    Then the probability of atleast one of the three events $$A,B$$ and $$C$$ occurring is
    Solution
    It is given that 
    $$P\left( A\cap \overline { B }  \right) +P\left( \overline { A } \cap B \right) =p,P\left( B\cap \overline { C }  \right) +P\left( \overline { B } \cap C \right) =p,P\left( A\cap \overline { C }  \right) +P\left( \overline { A } \cap C \right) =p$$
    and $$P\left( A\cap B\cap C \right) ={ p }^{ 2 }$$
    We have to find $$P\left( A\cup B\cup C \right) $$
    Now, $$P\left( A\cap \overline { B }  \right) +P\left( \overline { A } \cap B \right) =p\Rightarrow P\left( A \right) +P\left( B \right) -2P\left( A\cap B \right) =p$$   ...(1)
    Similarly $$P\left( B\cap \overline { C }  \right) +P\left( \overline { B } \cap C \right) =p\Rightarrow P\left( B \right) +P\left( C \right) -2P\left( B\cap C \right) =p$$   ...(2)
    and, $$P\left( A\cap \overline { C }  \right) +P\left( \overline { A } \cap C \right) =p\Rightarrow P\left( A \right) +P\left( C \right) -2P\left( A\cap C \right) =p$$   ...(3)
    Adding (1),(2) and (3), we get
    $$2\left[ P\left( A \right) +P\left( B \right) +P\left( C \right) -P\left( A\cap B \right) -P\left( B\cap C \right) -P\left( A\cap C \right)  \right] =3p$$
    $$\displaystyle \Rightarrow P\left( A \right) +P\left( B \right) +P\left( C \right) -P\left( A\cap B \right) -P\left( B\cap C \right) -P\left( A\cap C \right) =\frac { 3p }{ 2 } $$
    So, required probability 
    $$P\left( A\cup B\cup C \right) =P\left( A \right) +P\left( B \right) +P\left( C \right) -P\left( A\cap B \right) -P\left( B\cap C \right) $$
    $$\displaystyle -P\left( A\cap C \right) +P\left( A\cap B\cap C \right) =\frac { 3p }{ 2 } +{ p }^{ 2 }=\frac { 3p+2{ p }^{ 2 } }{ 2 } $$
  • Question 5
    1 / -0
    $$A, B$$ and $$\mathrm{C}$$ are three events such that $$P(\mathrm{A})=0.3, P(B)=0.4, P(C)=0.8$$,$$P(\mathrm{A}\cap B)=0.12, P(\mathrm{A}\cap C)=0.28$$, $$P(A\cap B\cap C)=0.09$$ and $$P(A\cup B\cup C)\geq 0.75$$, then the limits of $$P(B\cap C)$$ are
    Solution
    Since $$1\ge A\cup B\cup C\ge 0.75$$, we have from the diagram that: $$P(B\cup C)=P(A\cup B\cup C)-0.08$$
    Hence, $$0.92\ge P(B\cup C)\ge 0.67$$
    Now, $$P(B\cap C)=P(B)+P(C)-P(B\cup C)=1.2-P(B\cup C)$$
    Hence, $$1.2-0.67\ge P(B\cap C)\ge 1.2-0.92\quad =>\quad 0.53\ge P(B\cap C)\ge 0.28$$

  • Question 6
    1 / -0
    5 cards are drawn at random from a well shuffled pack of 52 playing cards. If it is known that there will be at least 3 hearts, the probability that all the 5 are hearts is
    Solution
    Let $$P(k)$$ = Probability of getting $$k$$ hearts among 5  drawn cards 
    $$P(k) = \dfrac{^{13}C_k \times ^{39}C_{5-k}}{^52C_k}$$
    i.e choosing k cards out of 13 Heart cards and choosing remaining 5-k cards from others
    $$P( \ge 3. hearts) = P(3.hearts)+P(4.hearts)+P(5. hearts)$$

    $$\displaystyle= \frac{^{13}C_{3}\times ^{39}C_{2}+^{13}C_{4}\times ^{39}C_{1}+^{13}C_{5}}{^{52}C_{5}}$$
    .
    Now using definition of conditional probability
    $$P(k=5| k \ge 3) =  P(k=5) /P(k \ge 3) $$
    $$\displaystyle =\frac{^{13}C_{5}}{^{13}C_{3}\times ^{39}C_{2}+^{13}C_{4}\times ^{39}C_{1}+^{13}C_{5}}$$
  • Question 7
    1 / -0
    For the three events $$A, B$$ and $$C,$$ $$P$$(exactly one of the events $$A$$ or $$B$$ occurs) $$= P$$(exactly one of the events $$C$$ or $$A$$ occurs) $$= P$$(exactly one of the events $$B$$ or $$C$$ occurs) $$= p$$ and $$P$$( all three events occur simultaneously) = $$p^2$$, where $$0<p<\displaystyle\frac{1}{2}$$. Then find the probability of atleast one of the three events $$A, B$$ and $$C$$ occurring.
    Solution
    According to the question,
    $$P(A) + P(B)-2P(A \cap B) = P(B)+P(C)-2P(B \cap C)= P(A) + P(C) -2P(A \cap C )= p$$.
    Adding, we get,  $$2(P(A)+P(B)+P(C)-P(A \cap B)  - P(B \cap C) - P(A \cap C))=3p$$ $$\therefore P(A) + P(B) + P(C)-P(A \cap B) - P(B \cap C) - P(A \cap C)=\displaystyle\frac {3p} {2}$$.
    Also $$P( A \cap B \cap C) = p^2$$
    $$ \therefore $$ $$P( A \cup B \cup C) = P(A) + P(B) + P(C) - P( A \cap B)  -P( B \cap C) -P( A \cap C)  + P( A \cup B \cup C)$$
    $$ \quad =\displaystyle\frac{3p}{2} + p^2 = \displaystyle\frac{3p+2p^2} {2}$$
  • Question 8
    1 / -0
    The odds that a book will be reviewed favourably by three independent critics are 5 to 2, 4 to 3 and 3 to 4 respectively. The probability that of the three reviewers a majority will be favourable
    Solution
    Let the three critics be $$A,B$$ and $$C$$.
    The odds that a book will be reviewed favorably by $$A,B$$ and $$C$$ are $$5$$ to $$2,4$$ to $$3$$ and $$3$$ to $$4$$ respectively.
    i.e. $$\displaystyle P\left( A \right) =\frac { 5 }{ 7 } ,P\left( B \right) =\frac { 4 }{ 7 } ,P\left( C \right) =\frac { 3 }{ 7 } $$
    $$\displaystyle \Rightarrow P\left( \overline { A }  \right) =\frac { 2 }{ 7 } ,P\left( \overline { B }  \right) =\frac { 3 }{ 7 } ,P\left( \overline { C }  \right) =\frac { 4 }{ 7 } $$
    To find the probability that a majority will be favorable is the same as the probability that at least two of them are favorable.
    $$\therefore$$ the required probability
    $$=P\left( A\cap B\cap \overline { C }  \right) +P\left( A\cap \overline { B } \cap C \right) +P\left( \overline { A } \cap B\cap C \right) +P\left( A\cap B\cap C \right) \\ =P\left( A \right) P\left( B \right) P\left( \overline { C }  \right) +P\left( A \right) P\left( \overline { B }  \right) P\left( C \right) +P\left( \overline { A }  \right) P\left( B \right) P\left( C \right) +P\left( A \right) P\left( B \right) P\left( C \right) $$
    $$\displaystyle =\frac { 2 }{ 7 } \times \frac { 4 }{ 7 } \times \frac { 4 }{ 7 } +\frac { 5 }{ 7 } \times \frac { 3 }{ 7 } \times \frac { 3 }{ 7 } +\frac { 2 }{ 7 } \times \frac { 4 }{ 7 } \times \frac { 3 }{ 7 } +\frac { 5 }{ 7 } \times \frac { 4 }{ 7 } \times \frac { 3 }{ 7 } =\frac { 209 }{ 343 } $$ 
  • Question 9
    1 / -0
    A pair of unbiased dice is rolled together till a sum is either $$5$$ or $$7$$ is obtained, The probability that $$5$$ comes before $$ 7$$ is
    Solution
    Let's denote the event of getting a sum of 5 be represented as 5 and that of 7 by 7
    hence 5 can be obtained by the combination {1,4 and 2,3} and 7 by {1,6  2,5  3,4} 
    thus $$P\left( 5 \right) =\left( \begin{matrix} 2 \\ 1 \end{matrix} \right) \left[ P\left( 1 \right) P\left( 4 \right) +P\left( 2 \right) P\left( 3 \right)  \right] =2\times \left[ \dfrac { 1 }{ 6 } \times \dfrac { 1 }{ 6 } +\dfrac { 1 }{ 6 } \times \dfrac { 1 }{ 6 }  \right] =\dfrac { 1 }{ 9 } \\ similarly\quad \\ P\left( 7 \right) =\left( \begin{matrix} 2 \\ 1 \end{matrix} \right) \left[ P\left( 1 \right) P\left( 6 \right) +P\left( 2 \right) P\left( 5 \right) +P\left( 3 \right) P\left( 4 \right)  \right] =2\times \left[ \dfrac { 1 }{ 6 } \times \dfrac { 1 }{ 6 } +\dfrac { 1 }{ 6 } \times \dfrac { 1 }{ 6 } +\dfrac { 1 }{ 6 } \times \dfrac { 1 }{ 6 }  \right] =\dfrac { 1 }{ 6 } \\ and\quad P\left( \overline { 5 } \cap \overline { 7 }  \right) =1-P\left( 5\cup 7 \right) =1-P\left( 5 \right) -P\left( 7 \right) +0\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =1-\dfrac { 1 }{ 9 } -\dfrac { 1 }{ 6 } =\dfrac { 13 }{ 18 } $$
    now Let the desired event be represented by E
    then $$P\left( E \right) =P\left( 5 \right) +P\left( \overline { 5 } \cap \overline { 7 }  \right) P\left( 5 \right) +P\left( \overline { 5 } \cap \overline { 7 }  \right) P\left( \overline { 5 } \cap \overline { 7 }  \right) P\left( 5 \right) +........................\infty $$
    clearly this is the infinite sum of a G.P with first term=$$P\left( 5 \right) $$ and common ratio=$$P\left( \overline { 5 } \cap \overline { 7 }  \right) $$
    $$\Rightarrow P\left( E \right) =\dfrac { P\left( 5 \right)  }{ 1-P\left( \overline { 5 } \cap \overline { 7 }  \right)  } =\dfrac { \dfrac { 1 }{ 9 }  }{ 1-\dfrac { 13 }{ 18 }  } =\dfrac { 2 }{ 5 } $$
  • Question 10
    1 / -0
    A student takes his examination in four subjects $$\alpha ,\beta ,\gamma ,\delta $$. He estimates his chance of passing in $$\alpha$$ is $$\displaystyle\frac{ 4 }{ 5 } $$, in $$\beta$$ is $$\displaystyle \frac { 3 }{ 4 } $$, in $$\gamma$$ is $$\displaystyle\frac { 5 }{ 6 } $$ and in $$\delta$$ is $$\displaystyle \frac { 2 }{ 3 }$$. The probability that he qualifies (passes in atleast three subjects) is 
    Solution
    $$\displaystyle P\left( \alpha  \right) =\frac { 4 }{ 5 } ,P\left( \overline { \alpha  }  \right) =1-\frac { 4 }{ 5 } =\frac { 1 }{ 5 } $$

    $$\displaystyle P\left( \beta  \right) =\frac { 3 }{ 4 } ,P\left( \overline { \beta  }  \right) =1-\frac { 3 }{ 4 } =\frac { 1 }{ 4 } $$

    $$\displaystyle P\left( \gamma  \right) =\frac { 5 }{ 6 } ,P\left( \overline { \gamma  }  \right) =1-\frac { 5 }{ 6 } =\frac { 1 }{ 4 } $$

    $$\displaystyle P\left( \delta  \right) =\frac { 2 }{ 3 } ,P\left( \overline { \delta  }  \right) =1-\frac { 2 }{ 3 } =\frac { 1 }{ 3 } .$$

    Different possibilities to qualify are 
    (1) passes in $$\alpha ,\beta ,\gamma $$ and fails in $$\delta $$
    (2) passes in $$\alpha ,\beta ,\delta $$ and fails in $$\gamma $$
    (3) passes in $$\alpha ,\gamma ,\delta $$ and fails in $$\beta $$
    (4) passes in $$\beta ,\gamma ,\delta $$ and fails in $$\alpha $$
    (5) passes in all the four sujbects $$\alpha ,\beta ,\gamma $$ and $$\delta .$$
    These are mutually exclusive possibilities. 
    $$\therefore $$ Required probability 
    $$\displaystyle =\left( \frac { 4 }{ 5 } \times \frac { 3 }{ 4 } \times \frac { 5 }{ 6 } \times \frac { 1 }{ 3 }  \right) +\left( \frac { 4 }{ 5 } \times \frac { 3 }{ 4 } \times \frac { 2 }{ 3 } \times \frac { 1 }{ 6 }  \right) \displaystyle+\left( \frac { 4 }{ 5 } \times \frac { 5 }{ 6 } \times \frac { 2 }{ 3 } \times \frac { 1 }{ 4 }  \right)+\\\quad\quad\quad\quad\quad\quad\left(\dfrac34\times\dfrac56\times\dfrac23\times\dfrac15\right) +\displaystyle\left( \frac { 4 }{ 5 } \times \frac { 3 }{ 4 } \times \frac { 5 }{ 6 } \times \frac { 2 }{ 3 }  \right) $$

    $$\displaystyle =\frac { 1 }{ 6 } +\frac { 1 }{ 15 } +\frac { 1 }{ 9 } +\frac{1}{12}+\frac { 1 }{ 3 } =\frac { 30+12+20+15+60 }{ 180 } =\frac { 137 }{ 180 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now