Let $$\displaystyle p_{1}, p_{2}, p_{3}$$ denote the probabilities that first, second and third critics review the book.
Given odds in favour that first critic will review the book is $$5:2$$
$$\displaystyle p_{1}=\dfrac{5}{5+2}=\dfrac{5}{7}$$
$$\displaystyle \Rightarrow \bar{p_{1}}=1-\frac{5}{7}=\frac{2}{7}$$
Given odds in favour that second critic will review the book is $$4:3$$
$$p_{2}=\dfrac{4}{4+3}=\dfrac{4}{7}$$
$$\displaystyle \Rightarrow \bar{p_{2}}=1-\frac{4}{7}=\frac{3}{7}$$
Given odds in favour that third critic will review the book is $$3:4$$
$$p_{3}=\dfrac{3}{3+4}=\dfrac{3}{7}$$
$$\displaystyle \Rightarrow \bar{p_{3}}=1-\frac{3}{7}=\frac{4}{7}$$
Now the majority will be favourable if any of the two critics is favourable and third is unfavourable or all the three critics are favourable.
Hence the required probability is
$$\displaystyle =p_{1}\:p_{2}\bar{p_{3}}+p_{1}\:\bar{p_{2}}\:p_{3}+\bar{p_{1}}\:p_{2}\:p_{3}+p_{1}\:p_{2}\:p_{3}$$
$$\displaystyle =\frac{5}{7}\cdot \frac{4}{7}\cdot \frac{4}{7}+\frac{5}{7}\cdot \frac{3}{7}\cdot \frac{3}{7}+\frac{2}{7}\cdot \frac{4}{7}\cdot \frac{3}{7}+\frac{5}{7}\cdot \frac{4}{7}\cdot \frac{3}{7}$$ $$=\dfrac{209}{343}$$