Self Studies

Probability Test - 54

Result Self Studies

Probability Test - 54
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let A and B be two events such that $$P(A \cup B) \geq 3/4 $$ and $$1/8 \leq P( A \cap B) \leq 3/8$$.
    Statement 1: $$P(A) + P(B) \geq 7/8$$
    statement 2: $$P(A) + P(B) \leq 11/8$$

    Solution
    $$P\left( A\cup B \right) =P\left( A \right) +P\left( B \right) -P\left( A\cap B \right) \\ \because \dfrac { 3 }{ 4 } \le P\left( A\cup B \right) \le 1\\ \Rightarrow \dfrac { 3 }{ 4 } \le P\left( A \right) +P\left( B \right) -P\left( A\cap B \right) \le 1\\ \Rightarrow \dfrac { 3 }{ 4 } +P\left( A\cap B \right) \le P\left( A \right) +P\left( B \right) \le 1+P\left( A\cap B \right) \\ \Rightarrow \dfrac { 3 }{ 4 } +\dfrac { 1 }{ 8 } \le P\left( A \right) +P\left( B \right) \le 1+\dfrac { 3 }{ 8 } \\ \Rightarrow \dfrac { 7 }{ 8 } \le P\left( A \right) +P\left( B \right) \le \dfrac { 11 }{ 8 } $$
    both the statements are correct but statement $$1$$ is not the correct explanation of statement $$2$$
  • Question 2
    1 / -0
    A biased coin with probability $$p,0<p<1$$, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is $$2/5$$, then $$p=$$........
    Solution
    Let $$x$$ denote the number of tosses required.
    Then $$P\left( x=r \right) ={ \left( 1-P \right)  }^{ r-1 }P;\quad r=1,2,3....$$
    Let $$E$$ denote the event that the number of tosses required is even. Then,
    $$P\left( E \right) =P\left\{ \left( x=2 \right) \cup \left( x=4 \right) \cup \left( x=6 \right) \cup ... \right\} \\ =P\left( x=2 \right) +P\left( x=4 \right) +P\left( x=6 \right) +....\\ =p\left( 1-p \right) +p{ \left( 1-p \right)  }^{ 3 }+p{ \left( 1-p \right)  }^{ 5 }+..$$
    $$\displaystyle =\frac { p\left( 1-p \right)  }{ 1-{ \left( 1-p \right)  }^{ 2 } } =\frac { p\left( 1-p \right)  }{ 2p-{ p }^{ 2 } } =\frac { 1-p }{ 2-p } $$
    As we are given that $$\displaystyle P\left( E \right) =\frac { 2 }{ 5 } $$, we get
    $$\displaystyle 5\left( 1-p \right) =2\left( 2-p \right) \Rightarrow 1-3p=0\Rightarrow p=\frac { 1 }{ 3 } $$
  • Question 3
    1 / -0
    Events $$A,B,C$$ are mutually exclusive events such that $$\displaystyle P\left ( A \right )= \frac{3x+1}{3},$$ and $$\displaystyle P\left ( B \right )= \frac{1-x}{4},$$ and $$\displaystyle P\left ( C \right )= \frac{1-2x}{2}.$$ The set of possible values of $$x$$ is in the interval
    Solution
    $$P\left( A \right) =\dfrac { 3x+1 }{ 3 } ,P\left( B \right) =\dfrac { 1-x }{ 4 } ,P\left( C \right) =\dfrac { 1-2x }{ 2 } \\ \because 0\le P\le 1\\ \Rightarrow 0\le \dfrac { 3x+1 }{ 3 } \le 1\\ \Rightarrow 0\le 3x+1\le 3\\ \Rightarrow \dfrac { -1 }{ 3 } \le x\le \dfrac { 2 }{ 3 } \\ similarly\quad 0\le \dfrac { 1-x }{ 4 } \le 1\\ \Rightarrow -4\le x-1\le 0\\ \Rightarrow -3\le x\le 1\\ similarly\quad 0\le \dfrac { 1-2x }{ 2 } \le 1\quad \quad \Rightarrow -2\le 2x-1\le 0\quad \\ \Rightarrow \dfrac { -1 }{ 2 } \le x\le \dfrac { 1 }{ 2 } \\ Also\quad 0\le P\left( A\cup B\cup C \right) \le 1\\ \Rightarrow 0\le P\left( A \right) +P\left( B \right) +P\left( C \right) -P\left( A\cap B \right) -P\left( B\cap C \right) -P\left( C\cap A \right) +P\left( A\cap B\cap C \right) \le 1\\ \Rightarrow 0\le P\left( A \right) +P\left( B \right) +P\left( C \right) \le 1$$
    Since A ,  B and C are mutually exhaustive hence $$P\left( A\cap B \right) =P\left( B\cap C \right) =P\left( C\cap A \right) =P\left( A\cap B\cap C \right) =0$$
    $$\Rightarrow 0\le \dfrac { 3x+1 }{ 3 } +\dfrac { 1-x }{ 4 } +\dfrac { 1-2x }{ 2 } \le 1\\ \Rightarrow 0\le \dfrac { 13-3x }{ 12 } \le 1\quad \quad \Rightarrow -12\le 3x-13\le 0\quad \quad \quad \quad \Rightarrow \dfrac { 1 }{ 3 } \le x\le \dfrac { 13 }{ 3 } $$
    comparing all the inequalities of x and taking the intersection we get 
    $$\dfrac { 1 }{ 3 } \le x\le \dfrac { 1 }{ 2 } \quad or\quad x\in \left[ \dfrac { 1 }{ 3 } ,\dfrac { 1 }{ 2 }  \right] $$
  • Question 4
    1 / -0
    The odds that a book will be reviewed favourably by three independent critics are 5 to 2,4 to 3 and 3 to 4 respectively; what is the probability that of three reviews a majority will be favourable?
    Solution
    Let $$\displaystyle p_{1}, p_{2}, p_{3}$$ denote the probabilities that first, second and third critics review the book.
    Given odds in favour that first critic will review the book is $$5:2$$
     $$\displaystyle p_{1}=\dfrac{5}{5+2}=\dfrac{5}{7}$$
    $$\displaystyle  \Rightarrow \bar{p_{1}}=1-\frac{5}{7}=\frac{2}{7}$$

    Given odds in favour that second critic will review the book is $$4:3$$
    $$p_{2}=\dfrac{4}{4+3}=\dfrac{4}{7}$$
    $$\displaystyle  \Rightarrow \bar{p_{2}}=1-\frac{4}{7}=\frac{3}{7}$$

    Given odds in favour that third critic will review the book is $$3:4$$
    $$p_{3}=\dfrac{3}{3+4}=\dfrac{3}{7}$$
    $$\displaystyle  \Rightarrow \bar{p_{3}}=1-\frac{3}{7}=\frac{4}{7}$$

    Now the majority will be favourable if any of the two critics is favourable and third is unfavourable or all the three critics are favourable.
    Hence the required probability is
    $$\displaystyle =p_{1}\:p_{2}\bar{p_{3}}+p_{1}\:\bar{p_{2}}\:p_{3}+\bar{p_{1}}\:p_{2}\:p_{3}+p_{1}\:p_{2}\:p_{3}$$

    $$\displaystyle =\frac{5}{7}\cdot \frac{4}{7}\cdot \frac{4}{7}+\frac{5}{7}\cdot \frac{3}{7}\cdot \frac{3}{7}+\frac{2}{7}\cdot \frac{4}{7}\cdot \frac{3}{7}+\frac{5}{7}\cdot \frac{4}{7}\cdot \frac{3}{7}$$

    $$=\dfrac{209}{343}$$
  • Question 5
    1 / -0
    Three numbers are chosen at random without replacement from $${1,2,....10}$$ . The probability that the minimum of the chosen numbers is $$3$$, or their maximum is $$7$$ is ..............
    Solution
    Let A and B denote the following events:
    A:minimum of the chosen number is 3
    B: maximum of the chosen number is 7
    We have,
    $$P(A)=P$$(choosing 3 and two other numbers from 4 to 10)
    $$=\cfrac { ^{ 7 }{ { C }_{ 2 } } }{ ^{ 10 }{ { C }_{ 3 } } } =\cfrac { 7\times 6 }{ 2 } \times \cfrac { 3\times 2 }{ 10\times 9\times 8 } =\cfrac { 7 }{ 40 } $$
    $$P(B)=P$$(choosing 7 and two other numbers from 1 to 6)
    $$=\cfrac { ^{ 6 }{ { C }_{ 2 } } }{ ^{ 10 }{ { C }_{ 3 } } } =\cfrac { 6\times 5 }{ 2 } \times \cfrac { 3\times 2 }{ 10\times 9\times 8 } =\cfrac { 1 }{ 8 } $$
    $$P\left( A\cap B \right) =P$$(Choosing 3 and 7 and one other number from 4 to 6)
    $$=\cfrac { 3 }{ ^{ 10 }{ { C }_{ 3 } } } =\cfrac { 3\times 3\times 2 }{ 10\times 9\times 8 } =\cfrac { 1 }{ 40 } $$
    Now $$P\left( A\cup B \right) =P\left( A \right) +P\left( B \right) -P\left( A\cap B \right) \\ =\cfrac { 7 }{ 40 } +\cfrac { 1 }{ 8 } -\cfrac { 1 }{ 40 } =\cfrac { 11 }{ 40 } $$
  • Question 6
    1 / -0
    Let $$\displaystyle \omega$$ be a complex cube root of unity with $$\displaystyle \omega$$ $$\displaystyle \neq$$ 1. A fair die is thrown three times. If $$\displaystyle r_{1}, r_{2}$$and $$\displaystyle r_{3}$$ are the numbers obtained on the die then the probability that $$\displaystyle\omega  ^{r_{1}}+\omega ^{r_{2}}+\omega ^{r_{3}}=0$$ is
    Solution
    $${ r }_{ 1 },{ r }_{ 2 },{ r }_{ 3 }\in \left\{ 1,2,3,4,5,6 \right\} $$
    $${ r }_{ 1 },{ r }_{ 2 },{ r }_{ 3 }$$ are if the form $$3k,3k+1,3k+2$$
    Required probability $$\displaystyle \frac { 3!\times _{  }^{ 2 }{ { C }_{ 1 } }\times _{  }^{ 2 }{ { C }_{ 1 } }\times _{  }^{ 2 }{ { C }_{ 1 } } }{ 6\times 6\times 6 } =\frac { 6\times 8 }{ 216 } =\frac { 2 }{ 9 } $$ 
  • Question 7
    1 / -0
    $$n$$ letters to each of which corresponds an addressed envelope are placed in the envelopes at random. What is the probability that no letter is placed in the right envelope?
    Solution
    Let $$\displaystyle A_{th}$$ denote the event that the $$\displaystyle i_{th}$$ letter is placed in the right envelope.
    Then the required probability is $$\displaystyle \frac{P\left ( \bar{A}_{1}\cap \bar{A}_{2}\cap .....\cap \bar{A}_{n} \right )}{P\left ( A_{i}\cup A_{2}\cup ......A_{n} \right )}$$.
    [By De-Morgan law]
    $$\displaystyle =1-P\left ( A_{1}\cup A_{2}\cup....\cup A_{n}  \right )$$
    $$\displaystyle =1-\left [ \sum P\left ( A_{i} \right )-\sum p\left ( A_{i}\cap A_{j} \right ) \right ]+\sum P\left ( A_{i}\cap a_{j}\cap A_{k} \right ) i\neq j  i\neq j\neq k $$
    $$\displaystyle -\cdots +\left ( -1 
    \right )^{n-1}p\left ( A_{i}\cap A_{2}\cap \cdots \cap A_{k} \right )$$
    Now $$\displaystyle p\left ( A_{i} \right )=\frac{\left ( n-1 \right )!}{n!}$$ as having placed $$\displaystyle i^{th}$$ letter in the right envelope, the remaining letters can be placed in $$(n-1)!$$ ways.
    Similarly, $$\displaystyle P\left ( A_{1}\cap 
    A_{2}\cap .....\cap A_{r} \right )=$$ Prob.of $$r$$ particular letters in right envelopes $$\displaystyle =\frac{\left ( n-r \right )!}{n!}$$
    $$\displaystyle \therefore 
    \sum p\left ( A_{1}\cap A_{2}\cap .....\cap A_{r} \right )$$
    $$\displaystyle =^{n}C_{r}.\frac{\left ( n-r \right )!}{n!}=\frac{1}{r!}$$ where $$\displaystyle r=1, 2, 
    3, ....n.$$
    $$\displaystyle \therefore \sum \left ( \bar{A_{1}}\cap \bar{A}_{2}\cap \cdots \cap\bar{A}_{n}  \right )$$
    $$\displaystyle =1-\left \{ \frac{1}{1!}-\frac{1}{2!}+\frac{1}{3!}-\cdots +\left ( -1 \right )^{n}.\frac{1}{n!} \right \}$$
    which is equal to first $$n-2$$ terms in the expansion of $$\displaystyle 
    e^{-1}$$.
  • Question 8
    1 / -0
    A bag contains 4 white, 5 red and 6 black balls. Three are drawn at random. Find the probability that (i) no ball drawn is black, (ii) exactly 2 are black (iii) all are of the same colour.
    Solution
    Total number of balls $$=15$$
    Total number of ways of selecting $$3$$ balls out of $$15$$ balls is $$^{15}C_3$$.
    Number of black balls $$=6$$
    Number of non-black balls $$=9$$ (4 white, 5 red)
    Probability of no ball drawn  is black $$=\dfrac{^9C_3}{^{15}C_3}=\dfrac{12}{65}$$
    Probability of exactly 2 black $$=\dfrac{^6C_2\times ^9C_1}{^{15}C_3}=\dfrac{27}{91}$$
    Probability of all of same colour i.e. $$RRR\ or\ WWW\ or\ BBB$$
    $$=\displaystyle \frac{^{4}C_{3}+^{5}C_{3}+^{6}C_{3}}{^{15}C_{3}}$$
    $$\displaystyle =\frac{4+10+20}{\dfrac{\left ( 15.14.13 \right )}{\left ( 3! \right )}}=\frac{34}{455}$$
  • Question 9
    1 / -0
    If for two events $$A$$ and $$B$$,$$\displaystyle P\left ( A\cup B \right )=\frac{1}{2}, P\left ( A\cap B \right )=\frac{2}{5}$$and then $$P(A^{c})+P(B^{c})$$equals
    Solution
    Given $$P(A\cup B)=\displaystyle\dfrac{1}{2}$$ and $$P(A\cap B)=\displaystyle\dfrac{2}{5}$$
    Fact $$P(A\cup B)=P(A)+P(B)-P(A\cap B)$$
    $$\Rightarrow P(A)+P(B)=P(A\cup B)+P(A\cap B)$$  $$=\displaystyle \dfrac{1}{2}+\dfrac{2}{5}=\cfrac{9}{10}$$
    $$\Rightarrow 1-P(A^{c})+1-P(B^{c})=\cfrac{9}{10}$$
    $$\Rightarrow P(A^{c})+P(B^{c})= 2-\cfrac{9}{10}=\cfrac{11}{10}$$
  • Question 10
    1 / -0
    $$A, B, C$$ are three events for which $$\displaystyle P(A) = 0.6, P(B) = 0.4, P(C) = 0.5, P(A \cup B) = 0.8, P(A \cap C) = 0.3$$ and $$\displaystyle P(A \cap B \cap C) = 0.2$$. If $$\displaystyle P(A \cup B \cup C) \geq 0.85$$ then the interval of values of $$\displaystyle P(B \cap C)$$ is
    Solution
    We know that $$P(A\cup B)=P(A)+P(B)-P(A\cap B)$$

    Hence, $$P(A\cap  B)=0.6+0.4-0.8=0.2$$

    We also know that $$P(A\cup B\cup C)=P(A)+P(B)+P(C)-P(A\cap B)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C)$$

    Now, $$1\ge P(A\cup  B\cup  C)\ge 0.85$$

    Thus, $$1\ge 0.6+0.4+0.5-0.2-P(B\cap  C)-0.3+0.2\ge 0.85$$

    $$\Rightarrow $$  $$0.35\ge P(B\cap  C)\ge 0.2$$

    Hence, (a) is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now