Self Studies

Relations and Functions Test - 12

Result Self Studies

Relations and Functions Test - 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Let n (A) = m, and n (B) = n. Then the total number of non-empty relations that can be defined from A to B is

    Solution

    Given that: n(A) = m and n (B) = n

    \(\therefore \) n(A × B) = n(A) . n(B) = mn

    So, the total number of non-empty relations from A to B \(2^{mn} - 1\)

  • Question 2
    1 / -0

    If \([x]^2\) – 5 [x] + 6 = 0, where [ . ] denote the greatest integer function, then

    Solution

    We have \([x]^2\) – 5[x] + 6 = 0

    ⇒ \([x]^2\) – 3[x] 2[x] + 6 = 0

    ⇒ [x]([x] – 3) – 2([x] – 3) = 0

     ⇒ ([x] – 3)([x] – 2) = 0 ⇒ [x] = 2, 3

    If 3 \(\leq\) x < 4, then [x]=3

    So, x \(\in\) [2, 4).

  • Question 3
    1 / -0

    Range of f (x) = \(\frac{1}{1 - 2cosx}\) is

    Solution

    Given that: f (x) = \(\frac{1}{1 - 2cosx}\) 

    We know that – 1 \(\leq\) cos x ≤ 1

    ⇒ -2 ≤ - 2 cos x ≤ 2

    ⇒ - 2 + 1 ≤ 1 – 2 cos x ≤ 2 + 1

    ⇒ - 1 ≤ 1 – 2 cos x ≤ 3

    ⇒ \(\frac{1}{1 - 2 cos x} \geq \frac{1}{3}\) and \(\frac{1}{1 - 2 cos x} \leq -1\)

    So, the range of f(x) = \((-\infty, -1] \cup[\frac{1}{3}, \infty)\)

  • Question 4
    1 / -0

    Let f (x) = \(\sqrt{1 + x^2}\), then

    Solution

    Given that: \(f(x) = \sqrt{1 + x^2}\)

    \(\implies f(xy) = \sqrt{1 + x^2y^2}\)

    and f(x).f(y) \(= \sqrt{1 + x^2}.\sqrt{1 + y^2}\)

    \( = \sqrt{1 + x^2 + y^2 + x^2y^2}\)

    \(\therefore \sqrt{1 + x^2y^2} \leq \sqrt{1 + x^2 + y^2 + x^2y^2}\)

    ⇒ f(xy) ≤ f(x).f(y)

  • Question 5
    1 / -0

    Domain of \(\sqrt{a^2 - x^2}(a > 0)\) is

    Solution

    Let \(f(x) = \sqrt{a^2 - x^2}\)

    f(x) is defined if \(a^2 - x^2 \geq 0\)

    \(\implies x^2 - a^2 \leq 0 \\ \implies x^2 \leq a^2\)

    ⇒ \(|x| \leq a \)

    ⇒ -a ≤ x ≤ a

    \(\therefore\)  Domain of f(x) = [-a, a]

  • Question 6
    1 / -0

    If f (x) = ax + b, where a and b are integers, f (–1) = – 5 and f (3) = 3, then a and b are equal to

    Solution

    Given that: f(x) = ax + b

    ⇒ f(- 1) = a(- 1) + b

    ⇒ - 5 = - a + b

    ⇒ a – b = 5 ….(i)

    f(3) = 3a + b

    ⇒ 3 = 3a + b

    ⇒ 3a + b = 3 …..(ii)

    On solving eqn. (i) and (ii), we get a = 2, b = - 3

  • Question 7
    1 / -0

    The domain of the function f defined by f (x) = \(\sqrt{4 - x} + \frac{1}{\sqrt{x^2 - 1}}\) is equal to

    Solution

    Given that: \(f(x) = \sqrt{4 - x} + \frac{1}{\sqrt{x^2 - 1}}\)

    f(x) is defined if

    4 – x ≥ 0 or \(x^2\) – 1 > 0

    ⇒ - x ≥ - 4 or (x – 1)(x + 1) > 0

    ⇒ x ≤ 4 or x < - 1 and x > 1

    \(\therefore\) Domain of f(x) is (- ∞, - 1) \(\cup\)(1, 4]

  • Question 8
    1 / -0

    The domain and range of the real function f defined by f (x) = \(\frac{4 - x}{x - 4}\) is given by

    Solution

    Given that: f(x) = \(\frac{4 - x}{x - 4}\)

    We know that f(x) is defined if x – 4 ≠ 0 ⇒ x ≠ 4

    So, the domain of f(x) is = R – {4}

    Let \(f(x) = y = \frac{4 - x}{x - 4}=-1\)

    \(\therefore\) Range of f(x) =  { - 1)

  • Question 9
    1 / -0

    The domain and range of real function f defined by f (x) = \(\sqrt{x - 1}\) is given by

    Solution

    Given that: \(f(x) = \sqrt{x - 1}\)

    f(x) is defined if x – 1 ≥ 0 ⇒ x ≥ 1

    \(\therefore \) Domain of f(x) = [1, ∞)

     \(Let,f(x) = y \)

    \(\implies \sqrt{x - 1} =y\)

    \(\implies y^2 = x - 1\)

    \(\implies x = y^2 + 1\)

    If x \(\in\)  [1, ∞) then y \(\in\) R

    \(\therefore \) Range of f(x) = [0, ∞)

  • Question 10
    1 / -0

    The domain of the function f given by f(x) = \(\frac{x^2 + 2x + 1}{x^2 - x - 6}\)

    Solution

    Given that: f(x) = \(\frac{x^2 + 2x + 1}{x^2 - x - 6}\)

    F(x) is defined if \(x^2 - x - 6 \neq 0\)

    ⇒ \(x^2 - 3x + 2x - 6 \neq 0\)

    ⇒ (x – 3)(x + 2) ≠ 0 ⇒ x ≠ - 2, x ≠ 3

    So, the domain of f(x) = R – {- 2, 3}

  • Question 11
    1 / -0

    The domain and range of the function f given by f (x) = 2 – |x - 5| is

    Solution

    Given that: f(x) = 2 – |x – 5|

    Here, f(x) is defined for x \(\in\) R

    \(\therefore\) Domain of f(x) = R

    Now, |x – 5| ≥ 0

    ⇒ - |x – 5| ≤ 0

    ⇒ 2 - |x – 5| ≤ 2

    ⇒ f(x) ≤ 2

    \(\therefore\) Range of f(x) = (- ∞, 2]

  • Question 12
    1 / -0

    The domain for which the functions defined by f (x) = \(3x^2\) – 1 and g (x) = 3 + x are equal is

    Solution

    Given that: f(x) = \(3x^2 - 1 \) and g(x) = 3 + x

    f(x) = g(x)

    ⇒ \(3x^2 - 1 = 3 + x\)

    ⇒ \(3x^2 - x - 4 = 0\)

    ⇒ \(3x^2 - 4x + 3x - 4 = 0\)

    ⇒ x(3x – 4) + 1(3x – 4) = 0

    ⇒ (x + 1)(3x – 4) = 0

    ⇒ x + 1 = 0 or 3x – 4 = 0

    ⇒ x = - 1, or \(x = \frac{4}{3}\)

    \(\therefore\) Domain = \(\{-1, \frac{4}{3}\}\)

  • Question 13
    1 / -0

    If A = {1,2,3,4} and B = {5,6,7} then number of relations from A to B is equal to

    Solution

    Given, n(A) = 4, n(B) = 3 We know that, the total number of relations from two finite sets A to B is given by

    \(= 2^{n(A).n(B)} \)

    = \(2^{4 × 3}\) = \(2^{12} \)

  • Question 14
    1 / -0

    For a set A, consider the following statements 

    I. A ∪ P(A) = P(A) 

    II. {A} ∩ P(A) = A

    III. P (A) - {A} = P(A)

    Where P denotes power set. Which of the statements given above is/are correct? 

    Solution

    Let A = { 1,2 } and {A} = {1, 2} 

    ⇒ P(A) = {{ 1 },{ 2 },{ 1, 2}, φ}, 

    Then, A ∪ P(A) ≠ P(A) 

    and {A} ∩ P(A) = {{1,2} ∩ {1},{2},{1,2}, φ }

    = { 1,2 } =  A

  • Question 15
    1 / -0

    Consider the universal set S = {0,1,2,3,4,5,6,7,8,9} and A = { 1,2,3,4 }, B = {2, 3, 5,6}, C = {2, 3, 7}, then

    The value of B′ − A′ is 

    Solution

    B′ = S − B = S − {2,3,5,6} = {0,1,4,7,8,9}

    A′ = S − A = S − {1,2,3,4} = {0, 5, 6, 7, 8, 9}

    \(\therefore\) B′ − A′ = {0,1,4,7,8,9} - {0,5,6,7,8,9}

    = {1,4}

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now