Self Studies

Relations and Functions Test - 19

Result Self Studies

Relations and Functions Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$R$$ be a relation on $$N$$ defined by $$x+2y=8$$. The domain of $$R$$ is
    Solution
    $$x+2y=8$$
    $$x=8-2y$$
    Since y and x both must be natural,
    Possible values of y are 1,2,3 which corresponds to possible value of x to be 6,4,2 .
    Thus range of R = $$\{2,4,6\}$$ 
  • Question 2
    1 / -0
    If y is a function of x and $$\log (x + y) = 2xy$$, then the value of y'(0) = .....
    Solution
    $$\log (x + y) = 2xy$$.....(1)
    $$\therefore \frac{1}{x + y} \cdot (1 + \frac{dy}{dx}) = 2x \frac{dy}{dx} + 2y$$
    $$\therefore ( \frac{1}{x + y} - 2x) \frac{dy}{dx} = 2y - \frac{1}{x + y}$$
    $$\therefore \frac{dy}{dx} = \frac{2y (x + y) - 1}{1 - 2x (x + y)}$$
    If x = 0, then from (1)
    log y = 0 = log 1
    $$\therefore$$ y = 1
    $$\therefore$$ y'(0) $$= \frac{(2(1)(0 + 1)-1)}{1 - 2(0)(0 + 1)} = 1$$
  • Question 3
    1 / -0
    If $$f(x+y)=f(x)f(y)$$ and $$ \sum^{\infty}_{x=1}f(x)=2\,x\,y\epsilon N$$, where $$N$$ is the set of all natural number, then the value of $$f(4)/f(2)$$ is:
    Solution
    $$f(x+y)=f(x)f(y)$$

    Put $$x=1,y=1$$

    $$f(2)=(f(1))^2$$

    Put $$x=2,y=1$$

    $$f(3)=f(2).f(1)=f(1)^3$$

    Put $$x=2,y=2$$

    $$f(4)=f((2))^2=f((1))^4$$

    $$f(n)=(f(1))^n$$

    $$\sum^{\infty}_{x=1} f(x)=f(1)+f(2)+f(3)+....=2$$

    $$\Rightarrow f(1)+f((1))^2+f(1))^3+.....=2$$

    $$f(1)/(1-f(1))=2$$

    $$f(1)=\frac{2}{3}$$

    $$f(2)=[\frac{2}{3}]^2$$

    $$f(4)=[\frac{2}{3}]^4$$

    $$\frac{f(4)}{f(2)}=\frac{[\frac{2}{3}]^4}{{[\frac{2}{3}]^2}}=\frac{4}{9}$$
  • Question 4
    1 / -0
    If $$\displaystyle f(x)= \cos{ \left[ \pi ^{ 2 } \right] x}+ \cos{( \left[ -\pi ^{ 2 } \right]x)}$$, where $$[.]$$ denotes the step function, then
    Solution
    $$\pi^2=9.87$$ 

    $$\Rightarrow$$$$9<\pi^2<10$$ and $$-10<-\pi^2<-9$$

    $$\therefore [\pi^2]=9$$ and $$[-\pi^2]=-10$$

    $$\therefore f(x)=\cos9x+\cos10x$$

    $$\therefore f\left ( 0 \right )=1+1=2$$

    $$\Rightarrow$$$$f\left ( \dfrac{\pi }{4} \right )=\cos9\times\dfrac{\pi}{4}+\cos10\times\dfrac{\pi}{4} $$

    $$\Rightarrow$$$$f\left ( \dfrac{\pi }{4} \right )$$$$=-\dfrac{1}{\sqrt{2}}$$

    $$\Rightarrow$$$$f\left ( \dfrac{\pi }{2} \right )=\cos9\times\dfrac{\pi}{2}+\cos10\times\dfrac{\pi}{2} $$

    $$\Rightarrow$$$$f\left ( \dfrac{\pi }{2} \right )=$$$$-1$$

    $$\Rightarrow$$$$f(\pi)=0$$

    Hence, option 'C' is correct.
  • Question 5
    1 / -0
    Let $$A$$ be a non-empty set such that $$A \times A$$ has $$9 $$ elements among which are found $$(-1, 0)$$ and $$(0, 1)$$, then
    Solution
    Given $$A\times A$$ has $$9$$ elements $$\Rightarrow n(A)=3$$
    Elements of $$A\times A  $$ are  $$(-1,0)$$  &  $$(0,1)$$.
    $$\therefore$$ $$A$$ needs to contain $$-1, 0$$ and $$1$$.
    $$\therefore$$ Since $$n(A)=3 \Rightarrow  A=\left \{ -1,0,1 \right \}$$
  • Question 6
    1 / -0
    If $$\displaystyle f(a)=\log\left ( \frac{2+a}{2-a} \right ), 0< a<2$$ then $$ \displaystyle \frac{1}{2}f\left ( \frac{8a}{4+a^{2}} \right )=$$  
    Solution
    Given $$\displaystyle f\left ( a \right )=\log \left ( \frac{2+a}{2-a} \right )$$

    Now, $$\displaystyle f\left ( \frac{8a}{4+a^{2}} \right )=\log\left (\frac{2+\frac{8a}{4+a^{2}}}{2-\frac{8a}{4+a^{2}}} \right )$$
    $$\displaystyle =\log \left ( \frac{8+2a^{2}+8a}{8+2a^{2}-8a} \right )$$
    $$\displaystyle =\log \frac{\left ( 2+a \right )^{2}}{\left ( 2-a \right )^{2}}$$
    $$\displaystyle =2\log \left ( \frac{2+a}{2-a} \right )$$
    $$=2f(a)$$
    $$\therefore \displaystyle \frac{1}{2}f\left ( \frac{8a}{4+a^{2}} \right )=f\left ( a \right )$$
  • Question 7
    1 / -0
    If $$f(x)=ax+\beta $$  and $$ f=\left \{ (1,1),(2,3),(3,5),(4,7) \right \} $$ then the values of $$ \alpha$$ and $$\beta $$ are 
    Solution
    $$f(1)=\alpha+\beta =1$$

    $$f(2)=\alpha\times2+\beta=3$$

    $$\therefore\alpha=2$$, $$\beta=-1$$
    Checking for rest of values using above $$\alpha $$ and $$\beta $$ also satisfies the function's input and output.
    Thus option A is correct.
  • Question 8
    1 / -0
    If $$f(x)=2^{x}$$ then $$\dfrac{f(x+3)}{f(x-1)}=$$
    Solution
    Let$$f\left ( x \right )=2^{x}$$
    $$f\left ( x+3 \right )=2^{x+3}=2^{x}\times2^{3}$$
    $$f\left ( x-1 \right )=2^{x-1}=\dfrac{2^{x}}{2} \quad \quad \left  [ \because a^{m+n}=a^{m}\times a^{n} \right ]$$
    $$\Rightarrow

    \dfrac { f\left( x+3 \right)  }{ f\left( x-1 \right)  } =\dfrac { 2^{ x

    }\times2^{ 3 } }{ \dfrac { 2^x }{ 2 }  } =16=2^{ 4 }=f\left( 4 \right) $$

  • Question 9
    1 / -0
    $$ f \left ( x +\dfrac{1}{x} \right ) = x^{2} + \dfrac{1}{x^{2}} $$
    Then $$f(x)$$ can be
    Solution
    We will try to represent $$\displaystyle f\left(x+\dfrac{1}{x}\right)$$ in the form of $$\displaystyle x+\dfrac{1}{x}$$ and substitute $$x$$ in the place $$x+\dfrac{1}{x}$$.

    Given $$\displaystyle f\left(x+\dfrac{1}{x}\right)=x^{2}+\dfrac{1}{x^2}$$

                       $$\displaystyle=\left(x+\dfrac{1}{x}\right)^{2}-2$$

    $$\Rightarrow \displaystyle f\left(x+\dfrac{1}{x}\right)=\left(x+\dfrac{1}{x}\right)^{2}-2$$
    Substituting $$x$$ in place of $$\displaystyle x+\dfrac{1}{x}$$, we get
    $$f\left(x\right)=x^2-2$$
  • Question 10
    1 / -0
    $$f:R\rightarrow R$$ is defined as $$f(x)=2x+\left | x \right |$$ then $$f(2x)-f(-x)-4x=$$
    Solution
    $$f\left ( 2x \right )=2(2x)+| 2x |$$

    $$=4x+2\left | x \right |$$

    $$f\left ( -x \right )=2\left ( -x \right )+\left | \left ( -x \right ) \right |$$

    $$=-2x+\left | x \right |$$

    $$f\left ( 2x \right )-f\left ( -x \right )=6x+\left | x \right |$$

    $$f\left ( 2x \right )-f\left ( -x \right )-4x=2x+\left | x \right |$$

    $$=\left ( 2x+\left | x \right | \right )$$

    $$=f\left ( x \right )$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now