Self Studies

Relations and F...

TIME LEFT -
  • Question 1
    1 / -0

    The number of relations from $$ A=\left \{ 1,2,3 \right \} $$ to $$B = \left \{ 4,6,8,10 \right \}$$ is

  • Question 2
    1 / -0

    If $$f:R\rightarrow R$$ is defined by $$f(x)=x^{2}-3x+2$$, then $$f(x^{2}-3x-2)=$$

  • Question 3
    1 / -0

    $$f(1)=1,n \geq 1\Rightarrow f(n+1)=2f(n)+1$$ then $$f(n)=$$    

  • Question 4
    1 / -0

    If $$f=\{(a,0), (b,-2), (c,3)\}$$, $$g=\{(a,-2),(b,0),(c,1)\}$$ then $$\dfrac{f}{g} = $$

  • Question 5
    1 / -0

    $$f(x)= \sin x $$ and $$g(x)= \sec x$$ then $$\dfrac{f(\pi )-f\left ( \dfrac{3\pi }{2} \right )+f(0)}{g(\pi )+g(0)+g\left ( \dfrac{\pi }{3} \right )}$$

  • Question 6
    1 / -0

    If $$f(x)=x+1$$ and $$g(x)=x^{2}+1 $$ then $$ \dfrac{f+g}{fg}(0)=$$

  • Question 7
    1 / -0

    If $$f (x)$$ is a polynomial function such that $$f(x)f\left(\dfrac{1}{x}\right)=f(x)+f\left(\dfrac{1}{x}\right)$$ and $$f(3)= -80$$ then $$f(x)$$ is equal to:

  • Question 8
    1 / -0

    If $$f(x)=3x+1, g(x)=x^{3}+2,$$ then $$ \dfrac{f+g}{fg}(0)=$$

  • Question 9
    1 / -0

    If $$f(x)$$ is a polynomial in $$x$$ $$(>0)$$ satisfying the equation $$f(x)+f\left ( \dfrac{1}{x} \right )=f(x)f\left ( \dfrac{1}{x} \right )$$ and $$f(2)=9,$$ then $$f(3)=$$

  • Question 10
    1 / -0

    If $$f(x)=x^{2}, g(x)=x^{2}-5x+6$$, then $$g(2)+g(3)+g(0)-f(0)-f(1)-f(-2)$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now