Self Studies

Relations and Functions Test - 24

Result Self Studies

Relations and Functions Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the function $$f(x) = \log\left(\dfrac{1+x}{1-x}\right)$$, then the value of $$f\left(\dfrac{2x}{1+x^2}\right)$$ is equal to
    Solution
    Given: 
    $$f\left(x\right) = \log\left(\dfrac{1+x}{1-x}\right)$$

    Substitute $$x$$ as $$ \dfrac{2x}{1+x^2}$$, in the above function, we get

    $$ f\left(\dfrac{2x}{1+x^2}\right)=\log\left(\dfrac{1+\dfrac{2x}{1+x^2}}{1-\dfrac{2x}{1+x^2}}\right)$$

    $$\Rightarrow f\left(\dfrac{2x}{1+x^2}\right)=\log\left(\dfrac{x^2+2x+1}{x^2-2x+1}\right)$$

    $$\Rightarrow f\left(\dfrac{2x}{1+x^2}\right)=\log\left(\dfrac{\left(x+1\right)^2}{\left(x-1\right)^2}\right)$$

    $$\Rightarrow f\left(\dfrac{2x}{1+x^2}\right)=\log\left(\dfrac{x+1}{x-1}\right)^2$$

    Using $$\log x^m = m\cdot\log x$$, we get

    $$ f\left(\dfrac{2x}{1+x^2}\right)=2\cdot \log\left(\dfrac{x+1}{x-1}\right)=2f\left(x\right)$$

    Hence, option B.
  • Question 2
    1 / -0
    R is a relation in A and (a, b) $$\notin$$ r, implies (b, a) $$\notin$$ R then R is said to be ____ relation
    Solution
    $$R$$ is a relation in $$A$$ and $$(a,b)$$.
    $$\Rightarrow (b,a)\notin R$$
    Hence $$'R'$$ is a skew symmetric relation.
    Answer:-$$C$$
  • Question 3
    1 / -0
    A $$\times$$ (B - C) =
    Solution

  • Question 4
    1 / -0

    Directions For Questions

    Based on this information answer the question
    (i) If $$A=\left \{ 1, 2, 3, 4 \right \}$$ the $$p(A)=\left \{ \phi , \left \{ 1 \right \}, 
    \left \{ 2 \right \}, \left \{ 3 \right \}, \left \{ 1, 2 \right \}, \left \{ 2, 3 \right \}, 
    \left \{ 1, 3 \right \}, \left \{ 1, 2, 3 \right \} \right \}$$ 
    Power set of an empty set, $$p(\phi )=\left \{ \left ( \phi  \right ) \right \}$$ and $$n\{p(\phi 
    )\}=1.$$
    (ii) Any subset of $$A\times A $$ is called a relation on A. Number of relations on $$A=2^{n^{2}}$$

    ...view full instructions

    Find the number of relations from $$\left \{ m, o, t, h, e, r \right \}$$ to $$\left \{ c, h, i, l, d \right \}$$
    Solution
    $$n \{m.o,t,b,e,r\} = 6 = m$$ (let)
    $$n \{c,h,i,l,d\} = 5 = n$$ (let)

    $$\therefore $$ numbers of Relations 
    $$= { 2 }^{ mn }$$
    $$= { 2 }^{ 6\times 5 }$$
    $$= { 2 }^{ 30 }$$                                                                      
  • Question 5
    1 / -0
    If $$R$$ is a relation from a set $$A$$ to a set $$B$$ and $$S$$ is a relation from $$B$$ to a set $$C$$, then the relation $$SOR$$
    Solution
    Domain of $$SOR$$ is the domain of $$R$$ and the range is the range of $$S$$. Hence the mapping is from set $$A$$ to set $$C$$. 
  • Question 6
    1 / -0
    Let $$A=\left \{ 1,2,3 \right \}$$. The total number of distinct relations that can be defined over $$A$$ is:
    Solution
    Total number of distinct binary relations over the set $$ A$$ will be
    $$2^{n^2}$$
    $$=2^{3^{2}}$$
    $$=2^{9}$$
    $$=512$$
  • Question 7
    1 / -0
    If $$\displaystyle f\left ( x \right ) = x^{2} + bx + c$$ and $$\displaystyle f\left ( 2 + t \right ) = f\left ( 2 - t \right )$$ for all real numbers $$t$$, then which of the following is true?
    Solution
    Given, $$f(x)=x^2+bx+c$$
    and $$f(2+t)=f(2-t)$$
    $$\therefore (2+t)^{2}+b(2+t)+c=(2-t)^{2}+b(2-t)+c$$
    $$8t=-2bt$$
    $$t=-4$$
    Substituting in $$f(x)$$, we get
    $$f(x)=x^2-4x+c$$
    Hence $$f(4)=c$$
    $$f(2)=c-4$$
    $$f(1)=c-3$$
    Hence $$f(2)<f(1)<f(4)$$.
  • Question 8
    1 / -0
    Let $$f:R\rightarrow R, g:R\rightarrow R$$ be the two given functions, then the function $$\displaystyle h(x)=2\times$$ min$$\{f(x)-g(x), 0\}$$ is same as
    Solution
    if $$f\left( x \right) > g\left( x \right)$$, then $$\displaystyle h(x)=2\times min (f(x)-g(x), 0)$$ will be equal to 0. 
    if  $$f\left( x \right) < g\left( x \right)$$ then $$\displaystyle h(x)=2\times min (f(x)-g(x), 0)$$ will be same as $$2\times\left( {f\left( x \right) - g\left( x \right)} \right)$$
    Only option D satisfies both the the conditions. Hence the correct answer is option D.
  • Question 9
    1 / -0
    A real valued function $$f(x)$$ satisfies the functional equation $$\displaystyle f(x-y)=f(x)f(y)-f(a-x)f(a+y)$$, where $$a$$ is a given constant and $$f(0)=1$$, then $$f(2a-x)$$ equals 
    Solution
    $$\displaystyle f(x-y)=f(x)f(y)-f(a-x)f(a+y)       ......(i)$$

    Substitute $$x=a$$, and $$y = x-a$$

    $$\Rightarrow f(a-(x-a))=f(a)f(x-a)-f(a-a)f(a+x-a)$$

    $$\Rightarrow f(2a-x) = f(a).f(x-a)-f(0).f(x) = f(a).f(x-a)-f(x)           ......(ii)$$

    Now put $$x=y=0$$ in $$(i)$$,

    $$\Rightarrow f(0)  =\{f(0)\}^2-\{f(a)\}^2\Rightarrow f(a) =0$$ since $$f(0)=1$$ (given)

    $$\therefore f(2a-x) =-f(x)$$
  • Question 10
    1 / -0
    Let $$R=\{(1, 3), (2, 2), (3, 2)\}$$ and $$S=\{(2, 1), (3, 2), (2, 3)\}$$ be two relations on set $$A=\{1, 2, 3\}$$.Then $$R$$o$$S$$ is equal
    Solution
    If $$f\epsilon X\times Y$$ and $$g\epsilon Y\times Z$$

    Then
    $$gof\epsilon X\times Z$$ i.e
    $$ (x,z)\epsilon gof$$

    Applying the above concept, we gives us
    $$RoS=\{(2,1)|(1,3),(3,2)|(2,2),(2,3)|(3,2)\}$$

    $$=\{(2,3),(3,2),(2,2)\}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now