Self Studies

Relations and Functions Test - 29

Result Self Studies

Relations and Functions Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x + y) = f(xy)$$ and $$f(1) = 5$$, then the value of $$\sum_{k\, =\, 0}^{6}\, f(k)$$.  
    Solution
    $$f(1+0)=f(1.0)$$

    $$f(0)=5$$

    $$f(2)=f(1+1)=f(1.1)=f(1)=5$$

    $$f(3)=f(2+1)=f(2.1)=f(2)=5$$

    Similarly $$f(4),f(5) $$ and $$f(6) $$ all are 5.

    $$\sum^{6}_{k=0}f(k)=7\times5=35$$
  • Question 2
    1 / -0
    R is a relation on set A then $$\displaystyle \left [ \left ( R^{-1} \right )^{-1} \right ]^{-1}$$ is_______
    Solution
    We know that Inverse of inverse of a Relation is the original Relation itself.

    So, $$ \left[ \left( { R }^{ -1 } \right) ^{ -1 } \right] ^{ -1 } = \left[ R \right] ^{ -1 } $$
  • Question 3
    1 / -0
    A relation which satisfies reflexive symmetric and transitive is ________ relation
    Solution
    A relation which satisfies reflexive symmetric and transitive is _called an equivalence relation
  • Question 4
    1 / -0
    If $$f(x) + f( 1- x) = 10$$, then the value of $$f\left ( \frac{1}{10} \right )\, +\, f\left ( \frac{2}{10} \right )\, +\, ..........\, +\, f\left ( \frac{9}{10} \right )$$ is
    Solution
    Clearly required expression contains 10 terms which can be grouped into 5 pairs each having complementary arguments which add up to 1.

    Answer $$=f\left(\dfrac1{10}\right)$$  +$$f\left(\dfrac9{10}\right)$$+$$f\left(\dfrac2{10}\right)$$ +$$f\left(\dfrac8{10}\right)$$+..............................

    $$=f\left(\dfrac1{10}\right)$$+$$f\left(1-\dfrac1{10}\right)$$ +$$f\left(\dfrac2{10}\right)$$ +$$f\left(1-\dfrac2{10}\right)$$ +...............................

    The first condition of the statement hence gives us the value to be $$5\times 10 =50$$
  • Question 5
    1 / -0
    If $$\displaystyle f:R\rightarrow R$$ defined by $$\displaystyle f\left ( x \right )=2x^{2}-3x+5$$, then find the value of $$\displaystyle \frac{f\left ( x+h \right )-f\left ( x \right )}{h}$$ at $$\displaystyle h\neq 0$$
    Solution
    Given, $$ f(x) = 2x^2 -3x + 5 $$
    So, $$ \dfrac { f(x+h)-f(x) }{ h } =\dfrac { 2{ (x+h) }^{ 2 }-3(x+h)+5-(2{ x }^{ 2 }-3x+5) }{ h } $$
                            $$ =\dfrac { 2{ x }^{ 2 }+2{ h }^{ 2 }+4xh-3x-3h+5-2{ x }^{ 2 }+3x-5 }{ h } =\dfrac { 2{ h }^{ 2 }+4xh-3h }{ h } =\quad 2h+4x-3 $$
  • Question 6
    1 / -0
    If $$\displaystyle R_{n}=\left \{ x:\frac{-1}{n}< x< \frac{1}{n} \right \}$$ then $$\displaystyle R_{5}\cup R_{15}=$$ ________
    Solution
    $$ R_5 = $$ { $$ x:-\frac {1}{5} < x < \frac {1}{5} $$  }
    And
    $$ R_{15} = $$ {$$ x:-\frac {1}{15} < x < \frac {1}{15} $$ }

    But,  $$ \frac {1}{15} < x < \frac {1}{15} $$ is within the limits of $$ \frac {1}{5} < x < \frac {1}{5} $$

    Hence, $$ R_5 \cup R_{15} = \frac {1}{5} < x < \frac {1}{5} = R_5 $$
  • Question 7
    1 / -0
    The domain of the function f(x) = $$\displaystyle \frac{\left | x \right |-2}{\left | x \right |-3}$$ is ________
    Solution
    The function has a real value only when denominator of the fraction is not equal to zero.


    So,  $$\left| x \right|   - 3 \neq = 0 $$
    $$ => \left| x \right|  \neq = 3 $$
    $$ => x \neq  = 3 ; -3 $$

    So, the domain of the function is $$ R - $$ { $$ -3,3 $$ }
  • Question 8
    1 / -0
    An equation that defines $$y$$ as a function of $$x$$ is given. Solve for $$y$$ in terms of $$x$$, and replace $$y$$ with the function notation $$f\left( x \right)$$.
    $$x - 2y = 18$$
    Solution
    $$ x-2y = 18$$
    $$-2y=18-x$$

    $$y=\dfrac{18-x}{-2}$$

    $$y=-(9-\dfrac{x}{2})$$
    $$y=(\dfrac{x}{2}-9)$$
  • Question 9
    1 / -0
    $$A = \left \{1, 2, 3, 4\right \}$$ and $$B = \left \{a, b, c\right \}$$. The relations from $$A$$ to $$B$$ is
    Solution
    $$A=\{1,2,3,4\}$$
    $$B=\{a,b,c\}$$

    Possible Relation $$R:A\to B$$
    $$=\{(1,a),(1,b)(1,c),(2,a),(2,b),(2,c),(3,a),(3,b),(3,c),(4,a),(4,b),(4,c)\}$$

    Option C contains Relation $$R:A\to B$$
  • Question 10
    1 / -0
    Find $$\left( f+g \right) \left( 1 \right) $$ when $$f\left( x \right) =x+6$$ and $$g\left( x \right) =x-3$$.
    Solution
    Given, $$f(x)=x+6$$ and $$g(x)=x-3$$
    We know $$(f+g)(1)$$ $$=f(1)+g(1)$$     .....(i)
    So, $$f(1)=1+6=7$$
    and $$g(1)=1-3=-2$$
    On substituting this value in equation (i), we get
    $$(f+g)(1)=7-2=5$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now