Self Studies

Relations and Functions Test - 30

Result Self Studies

Relations and Functions Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For the pair of functions,
    $$f\left( x \right) =9x-4,   g\left( x \right) =7x-9$$
    Find $$\left( f-g \right) \left( x \right) $$.
    Solution
    $$(f-g)(x)=f(x)-g(x)= 9x-4-7x+9=2x+5$$
  • Question 2
    1 / -0
    Let a relation $$R$$ be defined by $$R=\left \{(4,5), (1,4), (4,6), (7,6), (3,7)\right \}$$. The relation $$R^{-1}\circ R$$ is given by
    Solution
    We have $$R=\left \{(4,5), (1,4), (4,6), (7,6), (3,7)\right \}$$.
    $$\therefore R^{-1}=\left \{(5,4), (4,1), (6,4), (6,7), (7,3)\right \}$$
    $$(4,4)\in R^{-1}\circ R$$ because $$(4,5)\in R$$ and $$(5,4)\in R^{-1}$$
    $$(1,1)\in R^{-1}\circ R$$ because $$(1,4)\in R$$ and $$(4,1)\in R^{-1}$$
    $$(4,4)\in R^{-1}\circ R$$ because $$(4,6)\in R$$ and $$(6,4)\in R^{-1}$$
    $$(4,7)\in R^{-1}\circ R$$ because $$(4,6)\in R$$ and $$(6,7)\in R^{-1}$$
    $$(7,4)\in R^{-1}\circ R$$ because $$(7,6)\in R$$ and $$(6,4)\in R^{-1}$$
    $$(7,7)\in R^{-1}\circ R$$ because $$(7,6)\in R$$ and $$(6,7)\in R^{-1}$$
    $$(3,3)\in R^{-1}\circ R$$ because $$(3,7)\in R$$ and $$(7,3)\in R^{-1}$$
    $$\therefore R^{-1}\circ R=\left \{(4,4), (1,1), (4,7), (7,4), (7,7), (3,3)\right \}$$.
    $$\therefore$$ The correct answer is $$B$$.
  • Question 3
    1 / -0
    If $$A=\left \{1, 2,3\right \}$$ and $$B=\left \{3,8\right \}$$, then $$(A\cup B)\times (A\cap B)$$ is equal to
    Solution
    Given, $$A=\left \{1, 2,3\right \}$$ and $$B=\left \{3,8\right \}$$,
    Therefore, $$A\cup B=\left \{1,2,3\right \}\cup \left \{3,8\right \}=\left \{1,2,3,8\right \}$$
    and $$A\cap B=\left \{1,2,3\right \}\cap \left \{3,8\right \}=\left \{3\right \}$$
    $$\therefore (A\cup B)\times (A\cap B)=\left \{1,2,3,8\right \}\times \left \{3\right \}$$
    $$=\left \{(1,3), (2,3), (3,3), (8,3)\right \}$$
  • Question 4
    1 / -0
    The relation $$R$$ defined on the set $$A=\left \{1,2,3,4,5\right \}$$ by $$R=\left \{(x,y):|x^2-y^2| < 16\right \}$$ is given by
    Solution
    We have $$R=\left \{(x,y):|x^2-y^2| < 16\right \}$$.

    Take $$x=1,$$ we have
    $$ |x^2-y^2| < 16\Rightarrow |1-y^2| < 16$$
    $$\Rightarrow |y^2-1| < 16\Rightarrow y=1,2,3,4$$.

    Take $$x=2,$$ we have
    $$ |x^2-y^2| < 16 \Rightarrow |4-y^2| < 16$$
    $$\Rightarrow |y^2-4| < 16\Rightarrow y=1,2,3,4$$.

    Take $$x=3,$$ we have
    $$ |x^2-y^2| < 16\Rightarrow |9-y^2| < 16$$
    $$\Rightarrow |y^2-9| < 16\Rightarrow y=1,2,3,4$$.

    Take $$x=4,$$ we have
    $$ |x^2-y^2| < 16\Rightarrow |16-y^2| < 16$$
    $$\Rightarrow |y^2-16| < 16\Rightarrow y=1,2,3,4,5$$.

    Take $$x=5,$$ 
    $$|x^2-y^2| < 16 \Rightarrow |25-y^2| < 16$$
    $$\Rightarrow |y^2-25|<16 \Rightarrow y = 4,5$$

    $$\therefore R=\left \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), \\(3,3), (3,4), (4,1), (4,2), (4,3), (4,4), (4,5), (5,4), (5,5)\right \}$$
    $$\therefore$$ The correct answer is $$D$$.
  • Question 5
    1 / -0
    What is the Cartesian product of $$A = \left \{1, 2\right \}$$ and $$B = \left \{a, b\right \}$$?
    Solution
    If $$A $$ and $$B$$ are two non empty sets, then the Cartesian product $$A \times B$$ is set of all ordered pairs $$(a,b)$$ such that $$a\in A$$ and $$b\in B$$.

    Given $$A =\{1,2\}$$ and $$B = \{a,b\}$$

    Hence $$A\times B = \{(1,a),(1,b),(2,a),(2,b)\}$$ 
  • Question 6
    1 / -0
    Given that $$f\left( x \right) =5{ x }^{ 2 }-8x,g\left( x \right) ={ x }^{ 2 }-5x-24$$. Find $$\left( \displaystyle\frac { f }{ g }  \right) \left( x \right) $$
    Solution
    $$\left (\dfrac{f}{g}\right)(x)$$ means $$\dfrac{f(x)}{g(x)}$$
    Given, $$f(x)=5x^2-8x$$ and $$g(x)=x^2-5x-24$$
    So, $$\left (\dfrac{f}{g}\right)(x)=\dfrac{5x^2-8x}{x^2-5x-24}$$
    Hence, option B is correct.
  • Question 7
    1 / -0
    Find $$\left( f.g \right) \left( 2 \right) $$ when $$f\left( x \right) =x-1$$ and $$g\left( x \right) =-5{ x }^{ 2 }+14x+7$$.
    Solution
    $$(f.g)(2)$$ means $$f(2).g(2)$$
    Given, $$f(x)=x-1, g(x)=-5x^2+14x+7$$
    So, $$f(2)=2-1=1$$
    and $$g(2)=-5(2)^2+14(2)+7$$
    $$=-20+28+7$$
    $$=15$$
    Thus $$(f.g)(2)=f(2).g(2)=15\times 1=15$$
  • Question 8
    1 / -0
     $$(x, y)$$ and $$(p, q)$$ are two ordered pairs. Find the values of $$p$$ and $$y$$, if $$(4y + 5, 3p - 1) = (25, p + 1)$$
    Solution
    Given $$(x,y)=(p,q)$$
    $$(4y + 5, 3p - 1) = (25, p + 1)$$
    On equating we get
    $$4y + 5 = 25$$
    $$4y = 25 - 5$$
    $$4y = 20$$
    $$y = 5$$
    $$3p - 1 = p + 1$$
    $$3p - p = 1 + 1$$
    $$2p = 2$$
    $$p = 1$$
    So, the value of$$ p = 1, y = 5$$
  • Question 9
    1 / -0
    What is the first component of an ordered pair $$(1, -1)$$?
    Solution
    In an ordered pair $$(x,y)$$, the first component is $$x$$ and the second component is $$y$$.
    Therefore, in an ordered pair $$(1,-1)$$, the first component is $$1$$.
  • Question 10
    1 / -0
    $$(x, y)$$ and $$(p, q)$$ are two ordered pairs. Find the values of $$x$$ and $$p$$, if $$(3x - 1, 9) = (11, p + 2)$$
    Solution
    Given$$(x,y)=(p,q)$$
    $$(3x - 1, 9) = (11, p + 2)$$
    By equating 
    $$3x - 1 = 11$$
    $$3x = 12$$
    $$x = 4$$
    $$9 = p + 2$$
    $$p = 7$$
    So, the value of $$x = 4, p = 7.$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now