Self Studies

Relations and Functions Test - 31

Result Self Studies

Relations and Functions Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A \times B = \{(3, a), (3, -1), (3, 0), (5, a), (5, -1), (5, 0)\}$$, find $$A$$.
    Solution

  • Question 2
    1 / -0
    Given $$(a - 2, b + 3) = (6, 8)$$, are equal ordered pair. Find the value of $$a$$ and $$b$$.
    Solution
    By equality of ordered pairs, we have
    $$(a - 2, b + 3) = (6, 8)$$
    On equating we get
    $$a - 2 = 6$$
    $$a = 8$$
    $$b + 3 = 8$$
    $$b = 5$$
    So, the value of$$ a = 8 $$ and $$ b = 5.$$
  • Question 3
    1 / -0
    What is the second component of an ordered pair $$(3, -0.2)$$?
    Solution
    In an ordered pair $$(x,y)$$, the first component is $$x$$ and the second component is $$y$$.
    Therefore, in an ordered pair $$(3,-0.2)$$, the second component is $$-0.2$$.
  • Question 4
    1 / -0
    If $$A = \{2, 3\}$$ and $$B = \{1, 2\}$$, find $$A \times B$$.
    Solution

  • Question 5
    1 / -0
    If $$A \times B =$$ $${(2, 4), (2, a), (2, 5), (1, 4), (1, a), (1, 5)}$$, find $$B$$.
    Solution

  • Question 6
    1 / -0
    Ordered pairs $$(x, y)$$ and $$(3, 6)$$ are equal if $$x = 3$$ and $$y = ?$$
    Solution
    Given 
    $$(x,y)= (3,6)$$
    $$x=3$$
    $$y=6$$
    The value of $$x=3$$ and $$y=6$$.
  • Question 7
    1 / -0
    If the function $$f$$ is defined by $$f(x)=3x+4$$, then $$2 f(x)+ 4=$$____ . 
    Solution
    Given
    $$f(x)$$ $$=$$ $$3x$$ $$+$$ $$4$$

    $$2f(x)$$ $$+$$ $$4$$ $$=$$ $$(2$$ $$\times$$ $$f(x))$$ $$+$$ $$4$$
    From above,
    $$=$$ $$(2$$ $$\times$$ $$(3x$$ $$+$$ $$4))$$ $$+$$ $$4$$
    $$=$$ $$(2$$ $$\times$$ $$3x)$$ $$+$$ $$(2$$ $$\times$$ $$4)$$ $$+$$ $$4$$
    $$=$$ $$6x$$ $$+$$ $$8$$ $$+$$ $$4$$
    $$=$$ $$6x$$ $$+$$ $$12$$

    Therefore, the value of $$2f(x)$$ $$+$$ $$4$$ is $$'$$$$6x$$ $$+$$ $$12$$$$'$$.
  • Question 8
    1 / -0
    Let $$S=\{(a, b, c) \in N \times N\times N:a+b+c=21, a \le b \le c\}$$ and $$T=\{(a, b, c)\in N\times N\times N: a, b, c\, are\, in\,AP\}$$, where $$N$$ is the set of all natural numbers. Then, the number of elements in the set $$S\cap T$$ is
    Solution
    We have, $$a+b+c=21$$ and $$\dfrac{a+c}{2}=b$$
    $$\Rightarrow a+c+\dfrac{a+c}{2}=21$$
    $$\Rightarrow a+c=14\Rightarrow \dfrac{a+c}{2}=7$$
    $$\Rightarrow b=7$$
    So, a can take values from $$1$$ to $$6$$ and $$c$$ can have values from $$8$$ to $$13$$
    $$a=b=c=7$$
    $$[\because a\le b \le c]$$
    So, there are $$7$$ such triplets.
  • Question 9
    1 / -0
    Let $$f\left( x \right)=x+\dfrac { 1 }{ 2 } $$. Then, the number of real values of $$x$$ for which the three unequal terms $$f\left( x \right),f\left( 2x \right),f\left( 4x \right)$$ are in HP is
    Solution
    Given, 
    $$f\left( x \right) =x+\dfrac { 1 }{ 2 } =\dfrac { 2x+1 }{ 2 } $$
    $$\therefore f\left( 2x \right) =2x+\dfrac { 1 }{ 2 } $$
    $$\Rightarrow f\left( 2x \right) =\dfrac { 4x+1 }{ 2 } $$
    and 
    $$f\left( 4x \right) =4x+\dfrac { 1 }{ 2 } \Rightarrow f\left( 4x \right) =\dfrac { 8x+1 }{ 2 } $$

    Since, $$f\left( x \right) ,f\left( 2x \right) $$ and $$f\left( 4x \right) $$ are in HP.

    $$\therefore \dfrac { 1 }{ f\left( x \right)  } ,\dfrac { 1 }{ f\left( 2x \right)  } $$ and $$\dfrac { 1 }{ f\left( 4x \right)  } $$ are in AP.

    $$\Rightarrow \dfrac { 1 }{ f\left( 2x \right)  } =\dfrac { \dfrac { 1 }{ f\left( x \right)  } +\dfrac { 1 }{ f\left( 4x \right)  }  }{ 2 } $$

    $$\Rightarrow \dfrac { 2 }{ 4x+1 } =\dfrac { \dfrac { 2 }{ 2x+1 } +\dfrac { 2 }{ 8x+1 }  }{ 2 } $$

    $$\Rightarrow \dfrac { 2 }{ 4x+1 } =\dfrac { 10x+2 }{ \left( 2x+1 \right) \left( 8x+1 \right)  } $$

    $$\Rightarrow \left( 2x+1 \right) \left( 8x+1 \right) =\left( 5x+1 \right) \left( 4x+1 \right) $$
    $$\Rightarrow 16{ x }^{ 2 }+10x+1=20{ x }^{ 2 }+9x+1$$
    $$\Rightarrow 4{ x }^{ 2 }-x=0$$
    $$\Rightarrow x\left( 4x-1 \right) =0$$
    $$\Rightarrow x=\dfrac { 1 }{ 4 } $$                 $$\left[ \because x\neq 0 \right] $$
    Hence, one real value of $$x$$ for which the three unequal terms are in HP.
  • Question 10
    1 / -0
    Find the maximum value of $$f(x) = 1 - x^{2}$$ if $$-2\leq x\leq 2$$
    Solution
    Given, $$f(x) = 1-{ x }^{ 2 }$$ 
    Here $$f(x)$$ is maximum, if $$1-{ x }^{ 2 }$$ is maximum, which implies $${ x }^{ 2 }$$ should be minimum.
    The minimum value of $${ x }^{ 2 }$$ is $$0$$, which occurs at $$x=0$$. 
    Therefore, the maximum value of $$f(x)$$ is $$1-0 = 1$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now