Given, $$f\left( x \right) =x+\dfrac { 1 }{ 2 } =\dfrac { 2x+1 }{ 2 } $$ $$\therefore f\left( 2x \right) =2x+\dfrac { 1 }{ 2 } $$ $$\Rightarrow f\left( 2x \right) =\dfrac { 4x+1 }{ 2 } $$ and
$$f\left( 4x \right) =4x+\dfrac { 1 }{ 2 } \Rightarrow f\left( 4x \right) =\dfrac { 8x+1 }{ 2 } $$
Since, $$f\left( x \right) ,f\left( 2x \right) $$ and $$f\left( 4x \right) $$ are in HP.
$$\therefore \dfrac { 1 }{ f\left( x \right) } ,\dfrac { 1 }{ f\left( 2x \right) } $$ and $$\dfrac { 1 }{ f\left( 4x \right) } $$ are in AP.
$$\Rightarrow \dfrac { 1 }{ f\left( 2x \right) } =\dfrac { \dfrac { 1 }{ f\left( x \right) } +\dfrac { 1 }{ f\left( 4x \right) } }{ 2 } $$
$$\Rightarrow \dfrac { 2 }{ 4x+1 } =\dfrac { \dfrac { 2 }{ 2x+1 } +\dfrac { 2 }{ 8x+1 } }{ 2 } $$
$$\Rightarrow \dfrac { 2 }{ 4x+1 } =\dfrac { 10x+2 }{ \left( 2x+1 \right) \left( 8x+1 \right) } $$
$$\Rightarrow \left( 2x+1 \right) \left( 8x+1 \right) =\left( 5x+1 \right) \left( 4x+1 \right) $$ $$\Rightarrow 16{ x }^{ 2 }+10x+1=20{ x }^{ 2 }+9x+1$$ $$\Rightarrow 4{ x }^{ 2 }-x=0$$ $$\Rightarrow x\left( 4x-1 \right) =0$$ $$\Rightarrow x=\dfrac { 1 }{ 4 } $$ $$\left[ \because x\neq 0 \right] $$ Hence, one real value of $$x$$ for which the three unequal terms are in HP.