Self Studies

Relations and Functions Test - 37

Result Self Studies

Relations and Functions Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$\rho$$ be a relation defined on$$N$$, the set of natural numbers, as
    $$\rho =\left\{ \left( x,y \right) \in N\times N:2x+y=41 \right\} $$ then
    Solution
    $$\rho =\left\{ \left( x,y \right) \in N\times N:2x+y=41 \right\} $$
    for reflexive relation $$xRx\Rightarrow 2x+x=41\Rightarrow x=\cfrac { 41 }{ 3 } \notin N$$
    for symmetric $$\Rightarrow xRy\Rightarrow 2x+y=41\neq yRx\quad $$ (Not symmetric)
    for transitive $$xRy\Rightarrow 2x+y=41$$ and $$\quad yRz\Rightarrow 2y+z=41,x$$ (Not transitive)
  • Question 2
    1 / -0
    For real values of x ,the range of $$\frac {x^2+2x+1}{X^2+2x-1}$$ is
    Solution
    Let $$y=\frac{x^2+2x+1} {x^2+2x-1}$$
    $$\Rightarrow yx^2+2xy-y=x^2+2x+1$$
    $$\Rightarrow (y-1)x^2+2x(y-1)-(y+1)=0$$
    $$B^2-4AC\ge 0$$ & $$y\neq 1,y\neq 0$$
  • Question 3
    1 / -0
    Let $$R = gS - 4$$. When $$S = 8, R = 16$$. When $$S = 10, R$$ is equal to
    Solution
    $$16 = 8g - 4; \therefore g = 2\dfrac {1}{2}; \therefore R = \left (2\dfrac {1}{2}\right ) 10 - 4 = 21$$.
  • Question 4
    1 / -0
    If $$f:R\rightarrow R,g\quad :R\rightarrow R$$ are defined by $$f\left( x \right) =5x-3,g(x)={ x }^{ 2 }+3,$$ then $$\left( { gof }^{ -1 } \right) \left( 3 \right) =$$
    Solution
    $$f\left( x \right) =5x-3$$
    $${ f }^{ -1 }\left( x \right) =\frac { x+3 }{ 5 } $$
    $$g\left( x \right) ={ x }^{ 2 }+3$$
    $${ gof }^{ -1 }\left( 3 \right) =g\left( { f }^{ -1 }\left( 3 \right)  \right) =g\left( \frac { 6 }{ 5 }  \right) =\frac { 111 }{ 25 } $$




  • Question 5
    1 / -0
    If $$f(g(x))=g(f(x))=x$$ for all real numbers $$x$$ and $$f(2)=5$$ and $$f(5)=3$$, then the value of $$g(3)+g(f(2))$$ is
    Solution
    Since $$g$$ and $$f$$ inverse, $$g(3)=5$$ and os
    $$g(3)+g(f(2))=5+2=7$$
    $${ g }^{ -1 }(x)=f(x);{ f }^{ -1 }(x)=g(x)$$
    $$f(2)=5$$
    $${ f }^{ -1 }(5)=2;g(5)=2$$
    $${ f }^{ -1 }(3)=5;g(3)=5\quad $$
    $$ g(3) + g(f(2)) = g(3) + g(5) = 7$$
  • Question 6
    1 / -0
    The relation P defined from R to R as a P b $$\Leftrightarrow$$ 1 + ab > 0, for all a, b $$\epsilon$$ R is
    Solution
    $$Pb\Leftrightarrow 1+ab>0$$

    i)Reflexive: $$a\times a$$ for any real value except 0 is positive.Hence $$0\times 0+1>1\Rightarrow a\times a+1>0$$

    ii)Symmetric: if $$a\times b+1>0$$  then  $$b\times a+1$$ will also be $$>0$$

    iii)Not Transitive: a=-2,b=0\Rightarrow -2\times 0+1>0$$

    $$b=0,c=4\Rightarrow 0\times 4+1>0$$

    but a is not related to c  $$\because a=-2,c=4\Rightarrow -2\times 4+1<0$$
  • Question 7
    1 / -0
    If R is a relation on a finite set having n elements, then the number of relations on A is :
    Solution
    Here, the required number of relations on A can be found out by the formula $$2^{n^2}$$.
    Hence, option B is correct.
  • Question 8
    1 / -0
    If $$f(x) = \dfrac {4x + x^{4}}{1 + 4x^{3}}$$ and $$g(x) = \ln \left (\dfrac {1 + x}{1 - x}\right )$$, then what is the value of $$f\cdot g \left (\dfrac {e - 1}{e + 1}\right )$$ equal to?
    Solution
    $$g\left(\dfrac{e-1}{e+1}\right)=\log_e\left\lbrace\dfrac{1+\left(\dfrac{e-1}{e+1}\right)}{1-\left(\dfrac{e-1}{e+1}\right)}\right\rbrace=\log_e\left(\dfrac{2e}{2}\right)=\log_ee=1$$

    $$\therefore fog\left(\dfrac{e-1}{e+1}\right)=f\left(g\left(\dfrac{e-1}{e+1}\right)\right)=f(1)=\dfrac{4+1}{1+4}=1$$
  • Question 9
    1 / -0
    If the line $$x=\alpha$$ divides the area of the region $$R=\left\{(x,y)\in \mathbb{R}^2:x^3\le y\le x,0\le x\le 1\right\}$$ into two equal parts, then 
    Solution
    So, $$\int _{ 0 }^{ \alpha  }{ (x-{ x }^{ 3 }) } dx=\int _{ \alpha  }^{ 1 }{ (x-{ x }^{ 3 }) } dx\\ { [\cfrac { { x }^{ 2 } }{ 2 } -\cfrac { { x }^{ 4 } }{ 4 } ] }_{ 0 }^{ \alpha  }={ [\cfrac { { x }^{ 2 } }{ 2 } -\cfrac { { x }^{ 4 } }{ 4 } ] }_{ \alpha  }^{ 1 }\\ \cfrac { { \alpha  }^{ 2 } }{ 2 } -\cfrac { { \alpha  }^{ 4 } }{ 4 } =\cfrac { { 1 }^{ 2 } }{ 2 } -\cfrac { { 1 }^{ 4 } }{ 4 } -\cfrac { { \alpha  }^{ 2 } }{ 2 } +\cfrac { { \alpha  }^{ 4 } }{ 4 } \\ \cfrac { { 2\alpha  }^{ 2 } }{ 2 } -\cfrac { 2{ \alpha  }^{ 4 } }{ 4 } =\cfrac { { 1 } }{ 4 } ={ \alpha  }^{ 2 }-\cfrac { { \alpha  }^{ 4 } }{ 2 } \\ \cfrac { { 1 } }{ 2 } ={ 2\alpha  }^{ 2 }-{ \alpha  }^{ 4 }\\ { 2\alpha  }^{ 4 }-4{ \alpha  }^{ 2 }+1=0$$
    Thus, $${ 2\alpha  }^{ 4 }-4{ \alpha  }^{ 2 }+1=0$$

  • Question 10
    1 / -0
    The period of the function 
    $$f(x)=2^{\sqrt{\dfrac{2}{1-\cos 2x}}}+4^{\sqrt{\dfrac{1+\tan^2x}{4}}}$$
    Solution
    $$f(x)=2^{\sqrt{\dfrac{2}{1-\cos 2x}}}+4^{\sqrt{\dfrac{1+\tan^2 x}{4}}}$$

    $$=2^{\sqrt{\dfrac{2}{1+2\sin^2 x-1}}}+4^{\sqrt{\dfrac{\sec^2 x}{4}}}$$

    $$=2^{\sqrt{\dfrac{1}{\sin^2 x}}}+2^ {2 \times {\sqrt{\dfrac{\sec^2 x}{4}}}}$$

    $$=2^{cosec x}+ 2^{sec x}$$

    In case of $${cosec x} $$  and $${sec x}$$
    Period $$ = 2π$$
    Domain: $$-∞ < x <+∞ , x≠ (2n+1) π )/2 , n ε Z$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now