Self Studies

Relations and Functions Test - 38

Result Self Studies

Relations and Functions Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the domain of the function defined as $$f(x)=\dfrac{1}{1-x^2}$$.
    Solution
    $$f\left(x\right)=\dfrac{1}{1-x^{2}}$$
    For existance $$1-x^{2}\neq 0$$
    $$\Rightarrow x\neq+1,-1$$
    $$\Rightarrow x\in R-\left\{1,-1\right\}$$
  • Question 2
    1 / -0
    If $$aN = (ax/x \ \epsilon \ N)$$ and $$bN \cap cN = dN,$$, where $$b, c \ \epsilon N$$ are relatively prime, then 
    Solution

  • Question 3
    1 / -0
    Let $$f\left( x \right) :\begin{cases} x,\quad x\quad is\quad rational \\ 0,\quad x\quad is\quad irrational \end{cases}$$
    and 
    $$g\left( x \right) :\begin{cases} 0,\quad x\quad is\quad rational \\ x,\quad x\quad is\quad irrational \end{cases}$$

    If $$f:R\rightarrow R$$ and $$g:R\rightarrow R$$, then $$(f-g)$$ is

    Solution
    When x is rational  $$f(x)=x,g(x)=0$$ 
     
    $$\therefore (f-g)=x-0=x$$.So for each rational no. in $$(f-g)$$ there is the same rational number in co domain $$f(x)=0,g(x)=x$$ [when x is irrational]

    $$\therefore (f-g)=0-x=-x$$

    So for each irrational number x in domain, we have $$(-x)$$ in co domain.

    Conversely for each negative irrational number, there is an element in domain.

    But for positive irrational no. there is no corresponding element.

    Thus $$(f-g)$$ is one -one and into.
  • Question 4
    1 / -0
    If $$f:R \to R$$ is a function satisfying $$f(x + y) = f(xy)$$ for all $$x, y \in R$$ and $$f\left(\dfrac{3}{4}\right) = \left( \dfrac{3}{4} \right)$$ , then $$f\left( \dfrac{9}{16} \right)$$ =
    Solution
    $$f(x+y)=f(xy)\quad -(i)\\ f(\cfrac { 3 }{ 4 } )=(\cfrac { 3 }{ 4 } )\\ f(\cfrac { 9 }{ 16 } )=f(\cfrac { 3 }{ 4 } \times \cfrac { 3 }{ 4 } )\\ from(i)\\ f(\cfrac { 3 }{ 4 } \times \cfrac { 3 }{ 4 } )=f(\cfrac { 3 }{ 4 } +\cfrac { 3 }{ 4 } )\\ f(\cfrac { 3 }{ 4 } \times 2)=f(\cfrac { 3 }{ 2 } )\\ \because f(\cfrac { 3 }{ 4 } )=\cfrac { 3 }{ 4 } \quad constant\quad func.\\ \therefore f(\cfrac { 3 }{ 2 } )=\cfrac { 3 }{ 4 } $$
  • Question 5
    1 / -0
    Find the domain of the function defined as $$f(x)=\dfrac{x+1}{2x+3}$$.
    Solution

    Given:

    $$ f\left ( x \right ) = \frac{x + 1}{2x + 3}  $$

    $$ 2x + 3 = 0  $$

    $$ x = -\frac{3}{2} $$

    The domain is $$ R - \left \{ -\frac{3}{2} \right \} $$.

    Hence, the domain of the function is $$ R - \left \{ -\frac{3}{2} \right \} $$.

  • Question 6
    1 / -0
    Let R be a relation from$$ A=\left\{ 1,2,3,4 \right\}  to B=\left\{ 1,3,5 \right\}$$  such that $$R=[(a,b):a<b,where\ a\epsilon A\ and\ b\epsilon B]$$. What is $$R$$ equal to?
    Solution
    $$A=\{ 1,2,3,4\} \quad ,\quad B=\{ 1,3,5\} \\ R=[(a,b):a<b,where\quad a\epsilon A\quad \& \quad b\epsilon B]\\ R=[(1,3),(1,5),(2,3),(2,5),(3,5),(4,5)]$$
  • Question 7
    1 / -0
    $$x*y=\sqrt {\dfrac {(x+y)(y^{2}-12x)}{(x-2)(y-7)}}$$ then what will be the value of $$5*9$$?
    Solution
    $$x\ast y=\sqrt{\dfrac{(x+y)(y^{2}-12x)}{(x-2)(y-7)}}$$

    $$5\ast 9=\sqrt{\dfrac{(5+9)(81-60)}{(3)(2)}}=\sqrt{\dfrac{(14)(21)}{(3)(2)}}=\sqrt{(7)(7)}$$

    $$=\sqrt{49}$$

    $$=7$$
  • Question 8
    1 / -0
    If $$f:R \rightarrow S$$ defined by $$f(x)=\sin x-\sqrt {3} \cos x+1$$ is onto, then the interval of $$S$$ is 
    Solution
    $$f(x)=(\cfrac { \sin { x } -\sqrt { 3 } \cos { x }  }{ 2 } )2+1$$
    $$(\cfrac { 1 }{ 2 } \sin { x } -\cfrac { \sqrt { 3 }  }{ 2 } \cos { x } )\times 2$$
    $$2\cos { (\cfrac { \pi  }{ 6 } +x)+1 } $$
    $$-1\le \cos { (\cfrac { \pi  }{ 6 } +x)+1 }\le 1$$
    $$\Longrightarrow -2\le 2\cos { (\cfrac { \pi  }{ 6 } +x)+1 }\le 2$$
    $$\Longrightarrow -2+1\le 2\cos { (\cfrac { \pi  }{ 6 } +x)+1 }+1\le 2+1$$
    $$\Longrightarrow -1\le 2\cos { (\cfrac { \pi  }{ 6 } +x)+1 }+1\le 3$$
    $$\therefore$$ $$S\in[-1,3]$$.
  • Question 9
    1 / -0
    If $$f:R\rightarrow R$$ is defined by $$ f\left( x \right) =\left| x \right| $$, then:
    Solution
    $$f^{-1} (x)$$ does not exist.
    For $${ f }^{ -1 }(x)={ x }$$  to exists ,$$f(x)$$ must be subjective.But in case when $$f\left( x \right) =\left| x \right| $$ ,$$f(x)$$ is not injective(one-one).
    Therefore $$f^{-1}(x)$$ does not exist.
  • Question 10
    1 / -0
    If $$f:\,R\, \to R\,$$ is an even function which is differentiable on R and $${f^N}\left( \pi  \right) = 1\,the\,{f^N}\left( { - \pi } \right)\,{\rm{is}}$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now