Self Studies

Relations and Functions Test - 39

Result Self Studies

Relations and Functions Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f\left( x \right) = \cfrac{{{4^x}}}{{{4^x} + 2}}$$, then $$f\left( {\cfrac{1}{{97}}} \right) + f\left( {\cfrac{2}{{97}}} \right) + .... + f\left( {\cfrac{{96}}{{97}}} \right)$$ is equal to :
    Solution
    $$f\left( x \right) = \cfrac{{{4^x}}}{{{4^x} + 2}}$$

    $$f\left( {1 - x} \right) = \cfrac{{{4^{1 - x}}}}{{{4^{1 - x}} + 2}} = \cfrac{{\cfrac{4}{{{4^x}}}}}{{\cfrac{4}{{{4^x}}} + 2}} = \cfrac{4}{{4 + {{2.4}^x}}} = \cfrac{2}{{2 + {4^x}}}$$

    $$f\left( x \right) + f\left( {1 - x} \right) = \cfrac{{{4^x} + 2}}{{{4^x} + 2}} = 1$$

    $$ \Rightarrow f\left( {\cfrac{1}{{97}}} \right) + f\left( {\cfrac{2}{{97}}} \right) + ...... + f\left( {\cfrac{{96}}{{97}}} \right)$$

    $$ = \left[ {f\left( {\cfrac{1}{{97}}} \right) + f\left( {\cfrac{{96}}{{97}}} \right)} \right] + \left[ {f\left( {\cfrac{2}{{97}}} \right) + f\left( {\cfrac{{95}}{{97}}} \right)} \right] + ..... + \left[ {f\left( {\cfrac{{48}}{{97}}} \right) + f\left( {\cfrac{{49}}{{97}}} \right)} \right]$$

    $$ = 1 + 1 + 1 + 1 + ....... + 1(\therefore 48\,ones)$$

    $$ = 48$$
  • Question 2
    1 / -0
    Let R be a relation from N to N defined by 
    $$R = \left\{ {\left( {a,\,b} \right):a,\,b\, \in \,N\,\,and\,\,a = {b^2}} \right\}$$
    Solution

  • Question 3
    1 / -0
    If $$A = \{2, 3, 5\}$$ and $$B = \{5, 7\}$$, find the set with highest number of elements:
    Solution
    $$A=\left \{ 2,3,5 \right \}$$

    $$B=\left \{ 5,7 \right \}$$

    $$A\times B=\left \{ (2,5),(2,7),(3,5),(3,7),(5,5),(5,7) \right \}$$

    $$B\times A=\left \{ (5,2),(5,3),(5,5),(7,2),(7,3),(7,5) \right \}$$

    $$A\times A=\left \{ (2,2),(2,3),(2,5),(3,2),(3,3),(3,5),(5,2),(5,3),(5,5) \right \}$$

    $$B\times B=\left \{ (5,5),(5,7),(7,5),(7,7) \right \}$$

    $$\therefore A\times A$$ has the highest number of elements
  • Question 4
    1 / -0
    Let $$A = \left\{ {a,\,b,\,c} \right\}$$ and $$B = \left\{ {4,\,5} \right\}$$. Consider a relation defined from set A to set B, then R is equal to
    Solution
    A relation from set $$A$$ to set $$B$$ is called
    $$A\times B$$ and have following elements 
    $$A\times B=\left\{(a, 4),\ (a, 5),\ (b, 4),\ (b, 5),\ (c, 4),\ (c, 5)\right\}$$ 
    Total $$6$$ elements
    $$C$$ is correct
  • Question 5
    1 / -0
    Let $$A$$ and $$B$$ be two sets containing four and two elements respectively.Then the number of subset of the  set $$A \times B$$, each having at least three elements is 
    Solution
    $$A$$ and $$B$$ containing $$4$$ and $$2$$ respectively
    set A has 4 elements
    set B has 2 elements
    total number of element in $$(A\times B)=4\times 2=8$$
    total number of subsets of $$(A\times B)={2}^{8}=256$$
    Number of subsets having 0 element $$={ _{  }^{ 8 }{ C } }_{ 0 }=1$$
    Number of subsets having 1 element $$={ _{  }^{ 8 }{ C } }_{ 1 }=8$$
    number of subsets having 2 element $$={ _{  }^{ 8 }{ C } }_{ 2 }=\cfrac{8\times 7}{2}=28$$
    Number of subsets having atleast 3 elements
    $$=256-28-8-1=219$$
  • Question 6
    1 / -0
    If $$f:R \to R$$ is defined by $$f\left( x \right) = {x^2} - 3x + 2$$ and $$f\left( {{x^2} - 3x - 2} \right) = a{x^4} + b{x^3} + c{x^2} + dx + e$$ then $$a + b + c + d + e = $$
    Solution

  • Question 7
    1 / -0
    Let $$A = \left\{ {x,\,y,\,z} \right\}$$ and $$B = \left\{ {1,\,2} \right\}$$. The number relations from A to B is 
    Solution
    $$\Rightarrow$$  $$A=\{X,\,Y,\,Z\}$$ and $$B=\{1,\,2\}$$             [ Given ]
    $$\Rightarrow$$  Number of relation from $$A$$ to $$B$$ $$=2^{Number\,of\,elements\,in\,A\times B}$$
                                                                 $$=2^{n(A)\times n(B)}$$
    $$\Rightarrow$$  Number of elements in set $$A=3$$
    $$\Rightarrow$$  Number of elements in set $$B=2$$
    $$\Rightarrow$$  Number of relation from $$A$$ to $$B$$ $$=2^{n(A)\times n(B)}$$
                                                                 $$=2^{3\times 2}$$
                                                                 $$=2^6$$
                                                                 $$=2\times 2\times 2\times 2\times 2\times 2$$
                                                                 $$=64$$
  • Question 8
    1 / -0
    If $$f:R\rightarrow R$$ and $$g:R\rightarrow R$$ are defined by $$f\left( x \right) =x-\left[ x \right]$$ and $$ g\left( x \right) =\left[ x \right]$$  for $$x\in R$$,where $$[x]$$ is the greatest integer not exceeding $$x$$,then for every  $$x\in R$$,$$f(g(x))$$ is equal to
    Solution
    $$f(g(x))=[x]-[x]$$
    As $$[[x]]=[x]$$
    $$fog(x)=[x]-[x]=0$$
  • Question 9
    1 / -0
    If $$A = \left \{1, 2, 3, 4\right \}$$ and $$I_{A}$$ be the identify relation on $$A$$, then
    Solution

  • Question 10
    1 / -0
    The number of pairs (a, b) of positive real numbers satisfying $$a^4+b^4 < 1$$ and $$a^2+b^2 > 1$$ is
    Solution
    $$a^4+b^4<1$$
    $$a^2+b^2>1$$
    $$-a^2-b^2<-1$$
    $$a^4-a^2+b^4-b^2<0$$
    $$(a^2-\cfrac{1}{2})^2 + (b^2 - \cfrac{1}{2})^2 < \cfrac{1}{2}$$
    Hence, it is a circle of radius $$\cfrac{1}{\sqrt2}$$  and all the points within it satisfies this equation. Hence, more than 2
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now