Self Studies

Relations and Functions Test - 41

Result Self Studies

Relations and Functions Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f\left( 0 \right) = 0,f\left( 1 \right) =1 ,f\left( 2 \right) = 2$$ and $$f\left( x \right) = f\left( {x - 2} \right) + f\left( {x - 3} \right)$$ for $$x = 3,4,5.....$$ then $$f\left( 9 \right) = ?$$
  • Question 2
    1 / -0
    If $$a\ne R$$ and the equation $$-3(x-[x])^2+2(x-[x])+a^2=0$$ ( where $$[x]$$ denotes the greatest integer $$\le x$$) has no integral solution, then all possible values of a lie in the interval : 
    Solution
    REF.Image
    As $$x-[x]=\left \{ x \right \}$$, let $$\left \{ x \right \}=y$$

    As x is non-integral, $$0<y<1$$   $$(y\neq 0)$$
    equation becomes, $$-3y^{2}+2y+a^{2}=0$$

    $$\Rightarrow a^{2}=3y^{2}-2y=y(3y-2)$$

    Drawing graph of $$3y^{2}-2y=0$$ (parabola)

    Minima $$\Rightarrow \frac{d}{dy}(3y^{2}-2y)=0\Rightarrow 6y-2=0\Rightarrow y=1/3$$

    Taking positive solutions $$(a^{2}\geq 0)$$

    we get $$0 < a^{2} < 1$$

    $$\Rightarrow a\epsilon (-1,0)\cup (0,1)$$

    Option (C)

  • Question 3
    1 / -0
    $${x\epsilon R:\frac{14x}{x+1}-\frac{9x-30}{x-4}<0}$$ is equal to 
    Solution
    $$ x\epsilon R :\frac{14x}{x+1}-\frac{9x-30}{x-4}< 0 $$
    $$ x+1\neq 0 $$        $$ x-4 \neq 0 $$
    $$ \Rightarrow x \neq -1 $$    $$ x \neq 4 $$
    $$ 14(x-4)-(x+1)(7x-30)< 0 $$
    $$ 14x^{2}-56x-(9x^{2}-30x+9x-30)< 0 $$ 
    $$ 14x^{2}-56x-9x^{2}+30x-9x+30< 0 $$

    $$ 5x^{2}-35x+30< 0 $$
    $$ x^{2}-7x+6< 0 $$
    $$ x^{2}-6x+6< 0 $$
    $$ x(x-6)-1(x-6)< 0 $$
    $$ (x-1)(x-6)< 0 $$
    $$ \Rightarrow x> 1 $$ & $$ x< 6 $$
    $$ \Rightarrow x \epsilon ; (1,4)\cup (4,6) $$

  • Question 4
    1 / -0
    $$f:\left( 0,\infty  \right) \rightarrow R$$ is continuous. If  $$F\left(x\right)$$ is a differentiable function such that $$F\left(x\right)= f\left(x\right), \forall x>0$$ and $$ f\left( { x }^{ 2 } \right) ={ x }^{ 2 }+{ x }^{ 3 }$$, then $$f\left(4\right)$$ equals 
    Solution
    Given $$t (x^{2})= x^{2}+ x^{3}$$
    Put $$x=2$$
    $$t(4)= 4+8$$
    $$t (4)= 12$$
  • Question 5
    1 / -0
    If $$\left| { z }_{ 1 }-a \right| <a,\left| { z }_{ 2 }-a \right| <b,\left| { z }_{ 3 }-a \right| <c$$, $$(a,b,c\in R)$$ then $$\left| { z }_{ 1 }+{ z }_{ 2 }+{ z }_{ 3 } \right| $$ is
    Solution
    Given$$,$$
              $$\left| {{z_1} - a} \right| < a$$
              $$\left| {{z_2} - b} \right| < b$$
              $$\left| {{z_3} - c} \right| < c$$
    Then$$,$$
            $$\left| {{z_1} - a} \right| + \left| {{z_2} - b} \right| + \left| {{z_3} - c} \right| < a + b + c$$
            $$\left| {{z_1} + {z_2} + {z_3}} \right| < \left| {{z_1}} \right| + \left| {{z_2}} \right| + \left| {{z_3}} \right|$$
    and$$,$$
           $$\left| {\left( {{z_1} - a} \right) + \left( {{z_2} - b} \right) + \left( {{z_3} - c} \right) + a + b + c} \right|$$ $$ < \left| {{z_1} - a} \right| + \left| {{z_2} - b} \right| + \left| {{z_3} - c} \right| + \left| {a + b + c} \right|$$
    $$\left| {{z_1} + {z_2} + {z_3}} \right|$$               $$ < a + b + c + a + b + c$$
    $$\left| {{z_1} + {z_2} + {z_3}} \right|$$               $$ <2 \left( {a + b + c} \right)$$
    $$\left| {{z_1} + {z_2} + {z_3}} \right|$$ less then $$2\left( {a + b + c} \right)$$
    Hence$$,$$ Option $$(C)$$ is correct$$.$$
  • Question 6
    1 / -0
    The domain of $$\dfrac { 10 ^ { x } + 10 ^ { - x } } { 10 ^ { x } - 10 ^ { - x } }$$ is
    Solution
    For domain only the denominator must not be equal to ZERO
    It means $$10^x-10^{-x} \neq 0\\or\> x\neq 0$$
    So domain is R-{0}
    Numerator is fine with any value of x.
  • Question 7
    1 / -0
    If $$R$$ is the relation from set $$A$$ to a set $$B$$ and $$S$$ is the relation from $$B$$ to a set $$C$$, then the relation $$SoR$$
    Solution

  • Question 8
    1 / -0
    A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by :$$(x,y)\in\;R\; \rightarrow x$$ is relatively prime to y. Then, domain of R is
    Solution
    Given set $$A=\left\{ 2,3,4,5 \right\} $$ to $$B=\left\{ 3,6,7,10 \right\} $$
    is defined as $$\left( x,y \right) \in R\Rightarrow x$$ is relatively prime to $$y$$
    So $$(2,3)\in R$$
    Similarly, $$2$$ is relatively prime to $$7$$ so that $$(2,7)\in R$$
    So, we get $$R=\left\{ \left( 2,3 \right) ,\left( 2,7 \right) ,\left( 3,7 \right) ,\left( 3,10 \right) ,\left( 4,3 \right) ,\left( 4,7 \right) ,\left( 5,3 \right) ,\left( 5,6 \right) ,\left( 5,7 \right) , \right\} $$
    Thus domain $$\left\{ 2,3,4,5 \right\} $$
  • Question 9
    1 / -0
    Let $$f(x)=$$max $$\{(1-x), (1+x), 2\}, \forall x\in R$$. Then?
    Solution

  • Question 10
    1 / -0
    If $$f ( x ) + 2 f ( 1 - x ) = x ^ { 2 } + 2 , \forall x \in R$$, then find $$f ( x )$$
    Solution

    Given 

    $$f(x)+2f(1-x)=x^2+2 \cdots(1)$$

    Replace $$x$$ with $$1-x$$ 

    $$\implies f(1-x)+2f(1-(1-x))=(1-x)^2+2$$

    $$\implies f(1-x)+2f(x)=x^2-2x+3 \cdots(2)$$

    $$(1)+(2)$$

    $$\implies 3f(x)+3f(1-x)=2x^2-2x+5$$

    $$\implies f(x)+f(1-x)=\dfrac 23x^2-\dfrac 23 x+\dfrac 53 \cdots(3)$$

    $$(2)-(1)$$

    $$\implies f(x)-f(1-x)=1-2x \cdots(4)$$

    $$(3)+(4)$$

    $$\implies 2f(x)= \dfrac 23x^2-\dfrac 23 x+\dfrac 53 +1-2x$$

    $$\implies f(x)=\dfrac 13\left(x-2\right)^2$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now