Self Studies

Relations and Functions Test - 47

Result Self Studies

Relations and Functions Test - 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$R$$ is a relation on the set $$A=\left\{ 1,2,3,4,5,6,7,8,9 \right\} $$ given by $$xRy\Leftrightarrow y=3x$$, then $$R=$$
    Solution
    Given, $$R$$ is a relation on the set $$A=\left\{ 1,2,3,4,5,6,7,8,9 \right\} $$ given by $$xRy\Leftrightarrow y=3x$$, then $$R=\{(1,3),(6,2),(9,3)\}$$.
  • Question 2
    1 / -0
    A is a set having $$6$$ distinct elements. The number of distinct function from A to A which are not bijections is?
    Solution
    Total$$-$$ bijections

    $$6^6-6!$$.
  • Question 3
    1 / -0
    If $$f(x) = log_e \left(\dfrac{1 - x}{1 + x} \right) $$ then $$f \left(\dfrac{2x}{1 + x^2} \right)$$ is equal to 
    Solution
    $$f(x) = \ell n \left(\dfrac{1 - x}{1 + x} \right)$$
    $$f \left(\dfrac{2x}{1 + x^2} \right) = \ell n \left(\dfrac{1 - \dfrac{2x}{1 + x^2}}{1 + \dfrac{2x}{1 + x^2}} \right) = \ell n \left(\dfrac{1 + x^2 - 2x}{1 + x^2 + 2x} \right) = \ell n \left(\left(\dfrac{1 - x}{1 + x} \right)^2 \right) = 2 \ell n \left(\dfrac{1 - x}{1 + x} \right) = 2f(x)$$
  • Question 4
    1 / -0
    The number of ordered pairs (a, b) of positive integers such that $$\dfrac{2a - 1}{b}$$ and $$\dfrac{2b - 1}{a}$$ are both integers is 
    Solution
    The number of ordered pairs $$\left(a, b\right)$$ of positive integers where $$a,b\in{I}^{+}$$
    $$\Rightarrow\left(\dfrac{2a-1}{b},\dfrac{2b-1}{a}\right)\in{I}^{+}$$
    Let $$\dfrac{2a-1}{b}=1$$
    $$\Rightarrow\,2a-1=b$$

    and
    $$\Rightarrow\,\dfrac{2b-1}{a}=\dfrac{2\left(2a-1\right)-1}{a}$$
    $$=\dfrac{4a-2-1}{a}$$
    $$=\dfrac{4a-3}{a}$$

    $$\therefore \dfrac{2b-1}{a}=4-\dfrac{3}{a}$$
    For integer,$$a=1,3$$ we get
    $$b=2a-1=2-1=1$$ for $$a=1$$
    $$b=2a-1=2\times 3-1=6-1=5$$
    $$\therefore\,b=1,5$$
    So total sets are $$\left(1,1\right),\left(3,5\right),\left(5,3\right)$$
    Hence there are totally $$3$$ sets.
  • Question 5
    1 / -0
    Let $$f : \rightarrow $$ satisfy $$f(x) f(y) = f(xy)$$ for all real numbers x and y. If $$f(2) = 4$$ then $$f\left(\dfrac{1}{2} \right) = $$
    Solution
    Given
    $$f(x) f(y) = f(xy) $$ __(i)
    On taking $$x = 1, y = 1$$
    $$f(1) f(1) = f(1\times1) = f(1^2)= f(1) = 1$$
    Now, $$x = 2, y = \dfrac{1}{2}$$,  then from equation (i)
    $$f(2) f\left(\dfrac{1}{2} \right) = f\left(2. \dfrac{1}{2} \right)$$
    $$\Rightarrow 4 f\left(\dfrac{1}{2} \right) = f(1) $$    $$[\because f(2) = 4]$$
    $$\Rightarrow f \left(\dfrac{1}{2} \right) = \dfrac{1}{4} f(1)$$
    On putting the value of $$f(1)$$,
    $$\Rightarrow f \left(\dfrac{1}{2} \right) = \dfrac{1}{4} \times 1 = \dfrac{1}{4}$$
  • Question 6
    1 / -0
    For all rest numbers $$x$$ and $$y$$, it is known as the real valued function $$f$$  satisfies $$f(x) +f(y) = f(x+y)$$. If $$f(1) = 7$$. then $$\displaystyle \sum_{r=1}^{100} f(r)$$ is equal to
    Solution
    We have,
    $$f(x+y) = f(x) + f(y)$$    ...(i)

    Put, $$x = y= 1$$ in equation (i),

    We get, $$f(2) = f(1) + f(1) = 2f(1) = 2\times 7$$

    Again, put $$x = 1, y = 2$$ in Equation (i), we get

    $$f(3) = f(1) + f(2) = 7 + 2 \times 7 = 3\times 7$$

    $$\therefore f(n) = n \times 7$$

    Now, $$\displaystyle \sum_{r=1}^{100} f(r) = f(1) + f(2) + f(3)+...+f(100)$$

    $$= 7 + 2 \times 7 + 3 \times 7 + ...+ 100\times 7$$

    $$= 7[1+2+3...+100]$$

    $$= 7\times \dfrac{100(100+1)}{2}\left[ \because \sum n = \dfrac{n(n+1)}{2}\right]$$

    $$= 7\times 50\times 101$$
  • Question 7
    1 / -0
    If $$f(x) = \dfrac{1}{x^2 + 4x + 4} - \dfrac{4}{x^4 + 4x^2 + 4x^2} + \dfrac{4}{x^3 + 2x^{2'}}$$ then $$f\left(\dfrac{1}{2}\right)$$ is equal to
    Solution
    We have,
    $$f(x) = \dfrac{1}{x^2 + 4x + 4} - \dfrac{4}{x^4 + 4x^2 + 4x^2} + \dfrac{4}{x^3 + 2x^{2}}$$

    $$= \dfrac{1}{(x+2)^2} - \dfrac{4}{x^2(x+2)^2} + \dfrac{4}{x^2(x+2)}$$

    $$= \dfrac{x^2 - 4+4(x+2)}{(x+2)^2 .x^2}$$

    $$= \dfrac{x^2 -4+4x+8}{(x+2)^2.x^2}$$

    $$= \dfrac{x^2+4x+4}{(x+2)^2.x^2}$$

    $$=\dfrac{(x+2)^2}{(x+2)^2.x^2}$$

    $$= \dfrac{1}{x^2}$$

    $$\therefore f(x) = \dfrac{1}{x^2}$$

    $$\Rightarrow f\left(\dfrac{1}{2}\right) = \dfrac{1}{\left(\dfrac{1}{2}\right)^2} = 4$$
  • Question 8
    1 / -0
    If $$A=\{x\in R:x^2-5|x|+6=0\}$$, then $$n(A)=$$ ________.
    Solution
    The question indirectly wants to know the number of real roots for the given quadratic equation, 

    Let's solve for roots,

    $$x^2-5|x|+6=0\rightarrow (|x|-2)(|x|-3)=0$$ which gives $$x=\{2,-2,3,-3\}$$

    Thus $$n(A)=4$$
  • Question 9
    1 / -0
    If $$f(x)=3x-2$$ and $$g(x)=x^2$$, then $$fog(x)=$$_______.
    Solution
    $$f(x) = 3x - 2 $$ and $$g(x) = x^2$$
    Now, $$fog(x) = f (g(x))$$
                           $$ = f(x^2)$$
                           $$= 3(x^2) - 2$$ 

        $$\therefore\ fog(x) = 3x^2 - 2$$
  • Question 10
    1 / -0
    Let $$f: (-1, 1) \rightarrow (-1, 1)$$ be continuous , $$f(x) = f(x^2)$$ for all $$x \in (-1, 1)$$ and $$f(0) = \dfrac{1}{2}$$ , then the value of $$4 f \left(\dfrac{1}{4} \right)$$ is 
    Solution
    Given,
    $$f(x)=f(x^2)$$

    Now, $$f(1)=f(-1)=f(1)$$

    similarly, $$f(\dfrac12)=f(\dfrac{1}4)=f(\dfrac{-1}{2})$$

    which is only possible when the function is a constant function.

    So, $$f(0)=\dfrac12=f(\dfrac14)$$

    Therefore, $$4f\left(\dfrac{1}{4}\right)$$$$=4.\dfrac{1}{2}=2$$ 

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now