Self Studies

Relations and Functions Test - 49

Result Self Studies

Relations and Functions Test - 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$f(x) = \frac{ax}{x + 1}, x \neq  -1$$. Then for what value of $$\alpha$$ is $$f(f(x)) = x$$?                                                       (IIT-JEE, 2001)
    Solution

  • Question 2
    1 / -0
    If $$f(x + 1) + f(x - 1) = 2f(x) $$ and $$f(0) = 0$$, then $$f(n+1), n \space \epsilon \space N$$, is
    Solution
    Putting $$x = 1, f(2) + f(0) = 2f(1) \Rightarrow f(2) = 2f(1)$$
    Putting $$x = 2, f(3) + f(1) = 2f(2)$$
    $$\Rightarrow f(3) = 2 \times 2f(1) - f(1) = 3f(1)$$, and so on.
    $$\therefore f(n) = nf(1)$$, for $$n = 1, 2,........., n$$
    $$f(n + 1) + f(n - 1) = 2f(n)$$
    $$\Rightarrow f(n + 1) + (n - 1)f(1) = 2nf(1)$$
    $$\Rightarrow f(n + 1) = (n + 1) f(1)$$
  • Question 3
    1 / -0
    If $$ f : R^{+} \rightarrow R, f(x) + 3xf \left (\frac {1} {x} \right ) = 2 \left ( x + 1 \right )$$, then $$f(99)$$ is equal to 
    Solution
    $$f(x) + 3xf \left (\frac {1} {x} \right ) = 2 \left ( x + 1 \right )$$            (1)
    Replacing $$x$$ by $$\frac{1} {x}$$, we get 
    $$ f \left (\frac {1} {3} \right )+ 3 \frac{1} {x} f \left (x \right ) = 2 \left ( \frac{1} {x} + 1 \right )$$ 
    $$\Rightarrow x f\left ( \frac{1} {x} \right ) + 3f(x) = 2\left ( x + 1 \right )$$      (2)
    From (1) and (2), we have $$f(x) = \frac{ x + 1} {2}$$
    $$\Rightarrow f(99) = 50$$
  • Question 4
    1 / -0
    Let $$f:R\to R$$ be the function defined by $$f(x)=\left\{ \begin{matrix} 2x:x>3 \\ { x }^{ 2 }:1<x\le 3 \\ 3x:x\le 1 \end{matrix} \right.$$ Then $$f(-1)+f(2)+f(4)$$ is 
    Solution
    Given that $$f(x)=\left\{ \begin{matrix} 2x:x>3 \\ { x }^{ 2 }:1<x\le 3 \\ 3x:x\le 1 \end{matrix} \right.$$
    $$f(-1)+f(2)+f(4)=3(-1)+(2)^2 +2\times 4$$
    $$=-3+4+8=9$$
  • Question 5
    1 / -0
    If A  = { a , b , c , d} and B = { p , q ,r ,s} then relation from A and B is
    Solution
    Because $$ { ( a , p), ( b ,r) ( c ,r)} \subseteq  A \times B $$
  • Question 6
    1 / -0
    Rule from of relation {(1 ,2) , ( 2 , 5) , (3 , 10) , ( 4 , 17), ......} in N
    Solution

  • Question 7
    1 / -0
    A relation R in N is defined such that $$ xRy \Leftrightarrow  x +  4y  =  16 ,$$ then the range of R is
    Solution

  • Question 8
    1 / -0
    If A  = { a ,b , c} , then numbers of possible non zero relations in A is
    Solution

  • Question 9
    1 / -0

    Directions For Questions

    A function $$y=f(x)$$ is said to be symmetric about $$x=a$$ if $$f(a-x)=f(a+x)$$.
    A function $$y=f(x)$$ is symmetric about $$y=x$$ if $$f(f(x))=x$$.

    ...view full instructions

    A real valued function $$f(x)$$ satisfies the functional equation $$f(x-y)=f(x)f(y)-f(a-x)f(a+y)$$, where $$a$$ is a given constant and $$f(0)=1$$, then
    Solution
    Using the given relation 
    $$f(2a-x)=f(a-(x-a))$$

    Using the given expression for $$f(x-y)$$, take $$x = a$$ and $$y = x-a$$
    $$f(2a-x)=f(a)f(x-a)-f(a-a)f(a+x-a)$$
    $$f(2a-x)=f(a)f(x-a)-f(0)f(x)$$

    When $$x=0, y=0 \Rightarrow f(0)=(f(0))^2-(f(a))^2$$  
    It is given that $$f(0) = 1$$
    $$\Rightarrow f^2(a)=0\Rightarrow f(a)=0$$

    Substitute this in the expression,
    $$\Rightarrow f(2a-x)=0(f(x-a))-1(f(x))$$
    $$\Rightarrow f(2a-x) = -f(x)$$
    $$\Rightarrow f(2a-x) +f(x)=0$$
    Take $$x = a-x$$
    $$\therefore f(2a-(a-x)) = -f(a-x)$$
    $$\Rightarrow f(a+x) = -f(a-x)$$
    Hence, $$f(x)$$ is not symmetric about $$x=a$$.
  • Question 10
    1 / -0
    If $$f(x) + 2f(1 - x) = x^2 + 2 $$; $$\forall x \in R$$, then $$f(x)$$ is given by
    Solution
    $$\Rightarrow$$$$f(x)+2f(1-x)=x^2+2\cdots\cdots(i)$$

    Put $$x=1-x$$

    $$\Rightarrow$$$$f(1-x)+2f(x)=(1-x)^2+2$$

    Multiply by $$2$$

    $$\Rightarrow$$$$2f(1-x)+4f(x)= 2(1-x)^2+4\cdots\cdots(ii)$$

    Subtract $$(ii)$$ from $$(i)$$

    $$-3f(x)=x^2-2-2(1-x)^2$$

    $$-3f(x)=x^2-2-2x^2+4x$$

    $$-3f(x)=-(x^2-4x+4)$$

    $$f(x)=-\dfrac{(x-2)^2}{3}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now