Self Studies

Relations and Functions Test - 51

Result Self Studies

Relations and Functions Test - 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f : R \rightarrow R$$ satisfies $$f(x + y) = f(x) + f(y)$$, $$\forall x, y\, \in\, R$$ and $$f(1) = 7$$, then $$\sum_{r\, =\, 1}^{n}{f(r)}$$ is 
    Solution
    Given,
    $$f(1)=7$$
    So, Now
    $$f(1+1)=f(1)+f(1)$$  $$ [Since, f(a+b) =f(a) +f(b)]$$
    $$i.e. f(2)=7+7$$
    $$so, f(2) =2 \times 7$$
    Similarly,
    $$ f(3) =3 \times 7$$
    $$ f(n) =n \times 7$$

    Now,
    $$\sum \limits _{r=1}^n f(r)= 7(1+2+3+......+n)$$
    $$=7\dfrac{n(n+1)}{2}$$





  • Question 2
    1 / -0
    If $$A$$ and $$B$$ have $$n$$ elements in common, then the number of elements common to $$A\times B$$ and $$B\times A$$ is
    Solution
    If there are $$m$$ elements in $$A$$ and $$m$$ elements in $$B, A \times B$$ and $$B \times A$$ both will be having $$m^2$$ elements.
    Since there are $$n$$ elements common to $$A$$ and $$B$$, there will be $$n^2$$ such pairs in $$A \times B$$ and $$B \times A$$, which will have both the elements same.
    Since the elements are same, they are commutative and hence there will be $$n^2$$ elements common to $$A \times B$$ and $$B \times A$$
  • Question 3
    1 / -0
    Let $$f(x)=2-|x-3|, 1 \le x \le 5$$ and for rest of the values $$f(x)$$ can be obtained by using the relation $$f(5x)=\alpha\, f(x)\forall\, x \in R$$.
    The value of $$f(2007)$$ taking $$\alpha = 5$$, is: 
    Solution
    $$f\left( x \right) =2-\left| x-3 \right| ,1\le x\le 5$$
    $$f\left( 1 \right) =0$$
    $$f\left( 2 \right) =1$$
    $$f\left( 3 \right) =2$$
    $$f\left( 4 \right) =1$$
    $$f\left( 5 \right) =0$$
    $$f\left( 2007 \right) =\alpha f\left( \cfrac { 2007 }{ 5 }  \right) $$
    $$={ \alpha  }^{ 2 }f\left( \cfrac { 2007 }{ 25 }  \right) $$
    $$={ \alpha  }^{ 3 }f\left( \cfrac { 2007 }{ 125 }  \right) $$
    $$={ \alpha  }^{ 4 }f\left( \cfrac { 2007 }{ 625 }  \right) $$
    $$={ \alpha  }^{ 5 }f\left(\cfrac { 2007 }{ 3125 } \right)$$
    $$\cfrac { 2007 }{ 3125 } <1\therefore $$ Rejected
    $$\quad f\left( 2007 \right) ={ \alpha  }^{ 4 }f\left(\cfrac { 2007 }{ 625 } \right)$$
    $$\cfrac { 2007 }{ 625 } \approx 3$$
    $$f(2007)={ \alpha  }^{ 4 }f(3)$$
    $$={ 5 }^{ 4 }\times 2$$
    $$=1250$$
  • Question 4
    1 / -0
    Find the correct statement pertaining to the functions $$\displaystyle f\left( x \right) ={ \left( x-3 \right)  }^{ 2 }+2$$ and $$\displaystyle g\left( x \right) =\frac { 1 }{ 2 } x+1$$ graphed above
    Solution
    If $$f(x)=(x-3)^2+2$$ and $$g(x)=\dfrac { 1 }{ 2 } x+1$$ then $$f(x)=g(x)$$ is as follows:

    $$(x-3)^{ 2 }+2=\dfrac { 1 }{ 2 } x+1\\$$ 

    $$x^{ 2 }+9-6x+2=\dfrac { x+2 }{ 2 } \\$$ 

    $$x^{ 2 }-6x+11=\dfrac { x+2 }{ 2 } \\$$

    $$2(x^{ 2 }-6x+11)=x+2\\$$ 

    $$2x^{ 2 }-12x+22=x+2\\$$ 

    $$2x^{ 2 }-13x+20=0$$

    Now finding the roots of the quadratic equation $$2x^{ 2 }-13x+20=0$$:

    $$2x^{ 2 }-13x+20=0\\$$ 

    $$2x^{ 2 }-8x-5x+20=0\\$$

    $$2x(x-4)-5(x-4)=0\\$$ 

    $$2x-5=0,\quad x-4=0\\$$ 

    $$x=\dfrac { 5 }{ 2 }, \quad x=4$$

    Hence $$f(x)=g(x)$$ for exactly $$2$$ values of $$x$$.

  • Question 5
    1 / -0
    Let $$R$$ and $$S$$ be two non-void relations on a set $$A$$. Which of the following statements is false?
    Solution
    Let $$A=\left\{ 1,2,3 \right\}$$
    $$ ;\quad R=\left\{ (1,1),(2,2) \right\} ;\quad S=\left\{ (2,2),(2,3) \right\} $$
    be two transitive relations on $$A$$
    Thus $$R\cup S=\left\{ (1,1),(1,2),(2,2),(2,3) \right\} $$
    then $$\left( 1,2 \right) \in R\cup S\quad $$ and $$\left( 2,3 \right) \in R\cup S\quad $$
    but $$\left( 1,3 \right) \notin R\cup S$$
    $$R\cup S\quad $$ is not transitive
  • Question 6
    1 / -0
    Let $$F_n (\theta) = \displaystyle \sum_{k = 0}^n  \frac{1}{4^K}  \sin^4 (2^{k} \theta)$$, then which of the following is true
    Solution
    $$F_n (\theta) = \sin^4 \theta + \displaystyle \frac{\sin^4 2 \theta}{4} +

    \frac{\sin^4 (2^2 \theta)}{4^2} + \frac{\sin^4 (2^3 \theta)}{4^3}

    ........$$
    $$\displaystyle F_2 \left ( \frac{\pi}{4} \right ) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$
    $$F_3 \displaystyle \left ( \frac{\pi}{8} \right ) =\left(\frac{\sqrt{2-\sqrt{2}}}{2}\right)^4+\frac{1}{16}+\frac{1}{16}= \frac{2 - \sqrt 2}{4}$$
    $$\displaystyle F_4 \left ( \frac{3 \pi}{2} \right ) = 1+0=1$$
    $$\displaystyle F_5 \left ( \pi \right ) = 0$$
  • Question 7
    1 / -0
    Range of the function $$f(x)=\dfrac{sec^2\,x-tanx}{sec^2\,x+tanx}-\dfrac{\pi}{2}<x<\dfrac{\pi}{2}$$, is 
    Solution
    Let 

    $$f(x)=y$$

    $$y=\dfrac{sec^2x-\tan x}{sec^2 x+\tan x}$$

    $$\Rightarrow y(sec^2 x+\tan x)=sec^2x-\tan x$$

    $$\Rightarrow y(1+\tan^2x+\tan x)=1+\tan^2x-\tan x$$

    $$\Rightarrow y+y\tan^2x+y\tan x=1\tan^2x-\tan x$$

    $$\Rightarrow \tan^2x(y-1)+\tan(y+1)+y-1=0$$

    Now it is given $$\dfrac{-\pi}{2}<x< \dfrac{\pi}{2}$$

    So $$\tan x$$ is real in $$x\in(\dfrac{-\pi}{2},\dfrac{\pi}{2})$$

    So $$D\ge 0$$

    $$\Rightarrow (y+1)^2-4(y-1)(y-1)\ge 0$$

    $$\Rightarrow y^2+1+2y-4(y-1)^2\ge 0$$

    $$\Rightarrow y^2+2y+1-4(y^2+1-2y)\ge 0$$

    $$\Rightarrow y^2+2y+1-4y^2-4+8y\ge 0$$

    $$\Rightarrow -3y^2+10y-3\ge 0$$

    $$\Rightarrow 3y^2-910y+3\le 0$$

    $$\Rightarrow 3y^2-9y-y+3\le 0$$

    $$\Rightarrow 3y(y-3)-1(y-3)\le 0$$

    $$\Rightarrow (3y-1)(y-3)\le 0$$

  • Question 8
    1 / -0
    Let $$f:R \to R - \left\{ 3 \right\}$$ be a function such that for some p>0, $$\displaystyle f\left( {x + p} \right) = {{f\left( x \right) - 5} \over {f\left( x \right) - 3}}$$ for all $$x \in R$$. Then, period of $$f$$ is 
    Solution

  • Question 9
    1 / -0
    For a function F, F(0) = 2, F(1) = 3, F(x + 2) = 2 F(x) - F(x + 1) for x $$\geq$$ 0, then F(5) is equal to
    Solution

  • Question 10
    1 / -0
    If $$f\left( x \right)$$ satisfying the relation $$f\left( x \right) +f\left( x+4 \right) =f\left( x+2 \right) +f\left( x+6 \right) \ \forall x$$, then the period is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now