Self Studies

Relations and Functions Test - 53

Result Self Studies

Relations and Functions Test - 53
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Total number of equivalence relations defined in the set $$S=\left\{a, b, c\right\}$$ is?
    Solution

  • Question 2
    1 / -0
    A function $$y=f(x)$$ satisfies $$f"(x)=-\dfrac{1}{x^2}-\pi^2\sin(\pi x);f'(2)=\pi+\dfrac{1}{2}$$ and $$f(1)=0$$, the value of $$f\left(\dfrac{1}{2}\right)$$ is 
  • Question 3
    1 / -0
    Which of the following is always true
    Solution
    Truth table:
     $$p$$$$q$$ $$p\Rightarrow q$$ $$\sim q$$ $$\sim p$$ $$\sim q\Rightarrow \sim p$$ 
    $$T$$ $$T$$ $$T$$ $$F$$ $$F$$ $$T$$ 
    $$T$$ $$F$$  $$F$$$$T$$ $$F$$ $$F$$ 
    $$F$$ $$T$$ $$T$$ $$F$$ $$T$$ $$T$$ 
    $$F$$ $$F$$ $$T$$ $$T$$ $$T$$ $$T$$ 
    So, $$(p\Rightarrow q)\cong \sim q\Rightarrow \sim p$$
  • Question 4
    1 / -0
    $$f:\left( { - \infty ,\infty } \right) \to \left( {0,1} \right]$$ defined by $$f\left( x \right) = \frac{1}{{{x^2} + 1}}$$ is 
    Solution

  • Question 5
    1 / -0
    The values of $$a$$ and $$b$$ such that $$f$$ and $$f'$$ are continuous, are
    Solution

  • Question 6
    1 / -0
    Let $$X=\left\{ x \epsilon {R};\cos(\sin\ x)=\sin(\cos\ x)\right\}$$. The number of elements in $$X$$ is 
    Solution

  • Question 7
    1 / -0
    Let f(x) be a polynomial function such that $$f(x)+f(\dfrac{1}{x})=f(x).f(\dfrac{1}{x})$$ and $$ f(3)=82$$, then the value of $$f(5)$$, is 
    Solution

  • Question 8
    1 / -0
    If $$f^2(x)\cdot f\left(\dfrac{1-x}{1+x}\right)=x^{3},\ x\neq -1$$ and $$f(x)\neq 0$$ then the value of $$\left\{ f\left( -2 \right) \right\}$$ (the fractional part of $$f(x)$$ is equal to)
    Solution

  • Question 9
    1 / -0
    If $$\phi\left(x\right)=\phi\left(1\right)=2$$, then $$\phi\left(3\right)$$ equals
    Solution

  • Question 10
    1 / -0
    Let $$g$$ be a function that is differentiable throughout an open interval containing the origin.
    Suppose $$g$$ has the following properties
    $$g\left( x+y \right) =\left\{ g\left( x \right) +g\left( y \right)  \right\} \div \left\{ 1-g\left( x \right) g\left( y \right)  \right\}$$ for all real numbers $$x,\ y$$ and $$x+y$$ in the domain of $$g$$.
    $$\displaystyle \lim _{ h\rightarrow 0 }{ \dfrac { g\left( h \right)  }{ h } =1 }$$.
    Then $$g(0)$$ has value equal to
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now