Self Studies

Relations and Functions Test - 60

Result Self Studies

Relations and Functions Test - 60
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)={ x }^{ 3 }+{ x }^{ 2 }{ f }^{ ' }(1)+x{ f }^{ '' }(2)+{ f }^{ ''' }(3)$$ for all $$x\in R$$, then f(x) =
    Solution

  • Question 2
    1 / -0
    If $$\frac { { x }^{ 4 } }{ \left( x-a \right) \left( x-b \right) \left( x-c \right)  } $$
    $$=p(x)+\frac { A }{ x-a } +\frac { B }{ x-b } +\frac { C }{ x-c } then\quad p(x)=$$
    Solution

    Carefully observing LHS and RHS we can

    say that $$P(x)$$ has to be a linear

    equation, so let $$P(x)=m x+n$$

    $$\frac{x^{4}}{(x-a)(x-b)(x-c)}=(m x+n)+\frac{A}{(x-a)}+\frac{B}{(x-b)}+\frac{c}{(x-c)}$$

    $$\frac{x^{4}}{(x-a)(x-b)(x-c)}=(m x+n)(x-a)(x-b)(x-c)+A(x-b)(x-c)$$

    $$\quad \frac{+B(x-a)(x-c)+C(x-a)(x-b)}{(x-a)(x-b)(x-c)}$$

    Comparing cofficients of $$x^{4}, x^{3}, x^{2}, x$$ in both sides

    $$1=m=$$ (1)

    $$0=-a m-b m-c m+n$$

    $$\Rightarrow 0=-a-b-c+n$$

    $$\Rightarrow a+b+c=n-$$ (2)

    $$\therefore \quad P(x)=m x+n$$

    $$=x+(a+b+c)$$

    $$\therefore$$ Answer option (D)
  • Question 3
    1 / -0
    Let $$f_k(x)=\dfrac{1}{k}(\sin^kx+\cos^kx)$$ where $$x\in R$$ and $$k\geq 1$$. Then $$f_4(x)-f_6(x)=?$$
    Solution

    $$\begin{aligned} f_{4}(x) &=\frac{1}{4}\left(\sin ^{4} x+\cos ^{4} x\right) \\ &=\frac{1}{4}\left\{\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x\right\} \\ &=\frac{1}{4}\left(1-2 \sin ^{2} x \cos ^{2} x\right) \end{aligned}$$

    $$\begin{aligned} f_{6}(x) &=\frac{1}{6}\left(\sin ^{6} x+\cos ^{6} x\right) \\ &=\frac{1}{6}\left\{\left(\sin ^{2} x+\cos ^{2} x\right)\left(\sin ^{4} x+\cos ^{4} x-\sin ^{2} x \cos ^{2} x\right)\right\} \\ &=\frac{1}{6}\left\{(1)\left(1-3 \sin ^{2} x \cos ^{2} x\right)\right\} \\ &=\frac{1}{6}\left(1-3 \sin ^{2} x \cos ^{2} x\right) \end{aligned}$$

    $$\begin{aligned} f_{4}(x)-f_{6}(x) &=\frac{1}{4}-\frac{1}{2} \sin ^{2} x \cos ^{2} x-\frac{1}{6}+\frac{1}{2} \sin ^{2} x \cos ^{2} x \\ &=\frac{1}{4}-\frac{1}{6}=\frac{1}{12} \end{aligned}$$

    Answer: option (B)
  • Question 4
    1 / -0
    If  $$f(x)=x^{ { 2 } }+2x+2;x\geq -1=-x^{ { 3 } }+3x+1;x<-1,$$  then the value of  $$f ( f ( - 2 ) )$$  is :
    Solution
    $$f(x)=\left\{\begin{array}{l}x^{2}+2 x+2 ; x \geqslant-1 \\ -x^{3}+3 x+1 ; x<-1\end{array}\right.$$
    $$f(-2)=-(-2)^{3}+3(-2)+1=8-6+1=3$$
    $$f(f(-2))=f(3)=(3)^{2}+2(3)+2=17$$
    Answer option: (B).
  • Question 5
    1 / -0
    Let $$f(z)\equiv z^{3}+iz^{2}+iz-1$$. Among the roots of the equation $$f(z)=0$$
    Solution

  • Question 6
    1 / -0
    Let $$F\left( x \right) \begin{vmatrix} 1 & 1+\sin { x }  & 1+\sin { x } +\cos { x }  \\ 2 & 3+2\sin { x }  & 4+3\sin { x } +2\cos { x }  \\ 3 & 6+3\sin { x }  & 10+6\sin { x } +3\cos { x }  \end{vmatrix}, x\in R$$; then $$F'\left(\dfrac{\pi}{2}\right)$$ is equla to:
    Solution

  • Question 7
    1 / -0
    $$f (x) = x^4 - 10x^3 + 35x^2 - 50x + c$$ is a constant. the number of real roots of . f (x) = 0 and 
    f'' (x) = 0 are respectively 
    Solution
    Given, $$f(x)=x^{4}-10 x^{3}+35 x^{2}-50 x+c$$
    Then $$, f^{\prime}(x)=\dfrac{d}{d x}\left(-10 x^{3}+x^{4}+35 x^{2}-50 x+c\right)$$
    $$\Rightarrow f^{\prime}(x)=4 x^{3}-30 x^{2}+70 x-50=0$$
    $$\therefore 2 x^{3}-15 x^{2}+35 x-25=0$$
    First, let us factorise $$f(x)=0$$
    $$\Rightarrow x^{4}-10 x^{3}+35 x^{2}-50 x+c=0$$
    $$\Rightarrow(x-1)\left(x^{3}-9 x^{2}+26 x-c\right)=0$$
    $$\Rightarrow(x-1)\left((x-2)\left(x^{2}-7 x+\dfrac{c}{2}\right)\right)=0$$
    $$\Rightarrow f(x)=(x-1)(x-2)(x-4)(x-3)$$
    Roots of $$f^{\prime}(x)=0$$
    $$\Rightarrow 2 x^{3}-15 x^{2}+35 x-25=0$$
    $$\Rightarrow f^{\prime}(x)$$ has 3 roots which are
    $$x=\dfrac{5}{2}, \dfrac{5+\sqrt{5}}{2}, \dfrac{-\sqrt{5}+5}{2}$$
    Hence $$(A)$$ is the correct option.
  • Question 8
    1 / -0
    The function $$f$$ satisfies the functional equation $$3f(x) + 2 f\left (\dfrac {x + 59}{x - 1}\right ) = 10x + 30$$ for all real $$x\neq 1$$. The value of $$f(7)$$ is
    Solution
    $$\textbf{Step 1: Form equations putting different values of x.}$$

                    $$\text{It is given that,}$$

                    $$3f(x) + 2 f\left (\dfrac {x + 59}{x - 1}\right ) = 10x + 30.....(1)$$

                    $$\text{Putting x=7 in eq.(1)}$$

                    $$\Rightarrow 3f(7) + 2 f\left (\dfrac {7 + 59}{7 - 1}\right ) = 10\times 7 + 30$$

                    $$\Rightarrow 3f(7) + 2 f\left (\dfrac {66}{6}\right ) = 70 + 30$$

                    $$\Rightarrow 3f(7) + 2 f\left (11\right ) = 100.......(2)$$

                    $$\text{Again putting x=11 in eq.(1)}$$

                    $$\Rightarrow 3f(11) + 2 f\left (\dfrac {11 + 59}{11 - 1}\right ) = 10\times 11 + 30$$

                    $$\Rightarrow 3f(11) + 2 f\left (\dfrac {70}{10}\right ) = 110 + 30$$

                    $$\Rightarrow 3f(11) + 2 f\left (7\right ) = 140.......(3)$$

    $$\textbf{Step 2: Simplify to obtain the required result.}$$

                    $$\text{Multiplying eq(2) by 3 we get,}$$

                    $$\Rightarrow 9f(7) + 6 f\left (11\right ) = 300.......(4)$$

                    $$\text{Multiplying eq(3) by 2 we get,}$$

                    $$\Rightarrow 6f(11) + 4 f\left (7\right ) = 280.......(5)$$

                    $$\text{Subtracting eq.(5) from eq.(4) we get,}$$

                    $$\Rightarrow [9f(7) + 6 f\left (11\right )]-[6f(11) + 4 f\left (7\right )] = 300-280$$

                    $$\Rightarrow 9f(7) + 6 f\left (11\right )-6f(11) - 4 f\left (7\right ) = 20$$

                    $$\Rightarrow 5f\left (7\right ) = 20$$

                    $$\Rightarrow f\left (7\right ) = 4$$

                    $$\text{So, the required value is 4.}$$

    $$\textbf{Hence, the correct option is B.}$$

  • Question 9
    1 / -0
    If $$f(x)=\dfrac{x^2}{2}+3x$$ where $$x=2, \delta x=0.05$$ then $$df=?$$
    Solution
    $$f(x)=\dfrac{x^{2}}{2}+3 x$$
    $$d f=\left(\dfrac{2 x}{2}+3\right) \delta x$$
    $$d f=(x+3) \delta x$$
    $$d f=(2+3)(0.05)$$
    $$d f=0.25$$
    $$\therefore$$ Answer : option $$(B)$$
  • Question 10
    1 / -0
    If a relation R is defined on the set Z of integers as follows : (a,b) $$\epsilon \quad R\Leftrightarrow { a }^{ 2 }+{ b }^{ 2 }=25,$$ , Then domain (R)= 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now