$$\textbf{Step 1: Form equations putting different values of x.}$$
$$\text{It is given that,}$$
$$3f(x) + 2 f\left (\dfrac {x + 59}{x - 1}\right ) = 10x + 30.....(1)$$
$$\text{Putting x=7 in eq.(1)}$$
$$\Rightarrow 3f(7) + 2 f\left (\dfrac {7 + 59}{7 - 1}\right ) = 10\times 7 + 30$$
$$\Rightarrow 3f(7) + 2 f\left (\dfrac {66}{6}\right ) = 70 + 30$$
$$\Rightarrow 3f(7) + 2 f\left (11\right ) = 100.......(2)$$
$$\text{Again putting x=11 in eq.(1)}$$
$$\Rightarrow 3f(11) + 2 f\left (\dfrac {11 + 59}{11 - 1}\right ) = 10\times 11 + 30$$
$$\Rightarrow 3f(11) + 2 f\left (\dfrac {70}{10}\right ) = 110 + 30$$
$$\Rightarrow 3f(11) + 2 f\left (7\right ) = 140.......(3)$$
$$\textbf{Step 2: Simplify to obtain the required result.}$$
$$\text{Multiplying eq(2) by 3 we get,}$$
$$\Rightarrow 9f(7) + 6 f\left (11\right ) = 300.......(4)$$
$$\text{Multiplying eq(3) by 2 we get,}$$
$$\Rightarrow 6f(11) + 4 f\left (7\right ) = 280.......(5)$$
$$\text{Subtracting eq.(5) from eq.(4) we get,}$$
$$\Rightarrow [9f(7) + 6 f\left (11\right )]-[6f(11) + 4 f\left (7\right )] = 300-280$$
$$\Rightarrow 9f(7) + 6 f\left (11\right )-6f(11) - 4 f\left (7\right ) = 20$$
$$\Rightarrow 5f\left (7\right ) = 20$$
$$\Rightarrow f\left (7\right ) = 4$$
$$\text{So, the required value is 4.}$$
$$\textbf{Hence, the correct option is B.}$$