Self Studies

Trigonometric Functions Test 0

Result Self Studies

Trigonometric Functions Test 0
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Number of values of $$\theta \epsilon [0, 2\pi]$$ satisfying the equation $$\cot x-\cos x=1-\cot x.\cos x$$
    Solution
    $$\dfrac{cosx}{sinx}-cosx = 1 - \dfrac{cos^2x}{sinx}$$

    $$\Rightarrow cosx-cosx*sinx=sinx-cos^2x$$

    $$\Rightarrow cos^2x+cosx-cosxsinx-sinx=0$$

    $$\Rightarrow cosx(1+cosx)-sinx(1+cosx)=0$$

    $$\Rightarrow (cosx-sinx)(1+cosx)=0$$

     $$\Rightarrow x = \dfrac{\pi}{4} , \dfrac{5\pi}{4} , {\pi} $$

    Hence,  3 solutions exist.
  • Question 2
    1 / -0
    The smallest positive integral value of p for which the equation $$\cos \left ( p\sin x \right )=\sin \left ( p\cos x \right )$$ in x has a solution in $$\left [ 0, 2\pi  \right ]$$ is
    Solution
    $$\cos(p \sin x) = \sin(p \cos x)$$

    $$\Rightarrow \cos( p \sin x) = \cos\left(\dfrac{\pi}{2} - p \cos x \right)$$

    $$\Rightarrow p \sin x = \dfrac{\pi}{2} - p \cos x \Rightarrow \cos x + \sin x = \dfrac{\pi}{2p}$$

    condition for this equation to have solution is,
    $$ \dfrac{\pi}{2p} \leq \sqrt{2} \Rightarrow  p \geq\dfrac{\pi}{2\sqrt{2}} $$

    Hence smallest positive integer is $$2$$.
  • Question 3
    1 / -0
    The number of solutions of equation $$5\sec \theta-13=12\tan \theta $$ in $$\left [ 0, 2\pi  \right ]$$ is
    Solution
    $$ 5 sec\theta - 13 = 12 tan\theta$$

    $$\Rightarrow  12 sin\theta + 13 cos\theta = 5$$

    $$\Rightarrow  \dfrac{12}{\sqrt{313}} sin\theta + \dfrac{13}{\sqrt{313}} cos\theta = \dfrac{5}{\sqrt{313}}$$

    Let $$ cos\alpha = \dfrac{13}{\sqrt{313}} \Rightarrow sin\alpha = \dfrac{12}{\sqrt{313}}$$

    $$ \Rightarrow cos\theta.cos\alpha + sin\theta.sin\alpha = \dfrac{5}{\sqrt{313}}$$

    $$ \Rightarrow cos(\theta - \alpha) = \dfrac{5}{\sqrt{313}}$$

    Hence solution in the given interval is,

    $$ \theta = \alpha - cos^{-1}(\dfrac{5}{\sqrt{313}}), \alpha + cos^{-1}(\dfrac{5}{\sqrt{313}}) $$

    Hence, option 'A' is correct.
  • Question 4
    1 / -0
    The number of solutions of the equation $$x^3+2x^2+5x+2 cos x=0$$ in $$[0, 2\pi]$$ is:
    Solution
    Let $$f(x)=x^3+2x^2+5x+2 \cos x$$

    $$\Rightarrow f'(x)=3x^2+4x+5-2 sinx=2(x+\frac {2}{3})^2+\frac {11}{3}-2 sin x$$

    Now $$\frac {11}{3}-2 sinx > 0$$ $$x(as -1 \leq sin x \leq 1)$$

    $$\Rightarrow f'(x) > 0$$ $$x\Rightarrow f(x)$$ is an increasing function.

    Now $$f(0)=2$$

    $$\Rightarrow f(x)=0$$ has no solution in $$[0, 2\pi]$$.

    Hence (A) is the correct answer.
  • Question 5
    1 / -0
    The number of solutions of the equation $$\tan x+\sec x=2\cos x$$ lying in the interval $$\left [ 0, 2\pi  \right ]$$ is
    Solution
    $$ tanx + secx = 2  cosx$$

    $$ sinx + 1 = 2  cos^2x = 2 - 2  sin^2x$$

    $$ 2  sin^2x + sinx -1 = 0$$

    $$ (2  sinx - 1) (sinx + 1) = 0$$

    but $$ sinx = -1 \Rightarrow x = \dfrac{3\pi}{2}$$, which does not satisfy the given equation.

    $$ sinx = \dfrac{1}{2} = sin\dfrac{\pi}{6}$$

    therefore general solution is,
    $$ x = n\pi + (-1)^n.\dfrac{\pi}{6}$$

    $$ x = ......, \dfrac{\pi}{6}, \dfrac{5\pi}{6}, ......$$

    hence number of solution in the given interval is 2.
  • Question 6
    1 / -0
    For each integer $$n>1$$, let $$S(n)$$ denote the number of solution of the equation $$\sin x=\sin nx$$ on the interval $$[0,\pi]$$ Find the value of $$S(2)+S(3)+S(4)$$.
    Solution
    $$sin(x)=sin2x$$
    $$sin(x)=2sin(x).cos(x)$$
    $$sin(x)[2cos(x)-1]=0$$
    $$sin(x)=0$$ and $$cos(x)=\dfrac{1}{2}$$
    $$x=0,\pi$$ and $$x=\dfrac{\pi}{3}$$ ...(i)
    Hence there are 3 solutions.

    $$S(3)$$
    $$sin(x)=sin3x$$
    $$sin3x-sinx=0$$
    $$2cos(2x).sinx=0$$
    $$sin(x)=0$$ and $$cos(2x)=0$$
    $$x=0,\pi$$ and $$x=\dfrac{\pi}{4},\dfrac{3\pi}{4}$$
    Hence number of solutions are 4.

    $$S(4)$$
    $$sin(x)=sin4x$$
    $$sin4x-sinx=0$$
    $$2cos(\dfrac{5x}{2}).sin(\dfrac{3x}{2})=0$$
    $$x=0,\dfrac{2\pi}{3}$$ and $$x=\dfrac{\pi}{5},\dfrac{3\pi}{5},\pi$$
    Hence number of solutions are 5.
    Thus $$S(2)+S(3)+S(4)$$
    $$=3+4+5$$
    $$=12$$.
  • Question 7
    1 / -0
    If $$0\leq x\leq 2\pi $$, $$0\leq y\leq 2\pi $$ and $$\sin x+\sin y=2$$ then the value of $$x+y$$ is
    Solution
    We have, $$ \sin x + \sin y = 2$$

    but we know that maximum value of \sin x is $$1$$

    hence only solution is $$ \sin x = 1 $$ and $$\sin y = 1$$

    so in $$0 \leq x \leq 2\pi, 0 \leq y \leq 2\pi $$

    solution is $$ x = \dfrac{\pi}{2}, y = \dfrac{\pi}{2} $$

    therefore,
    $$ x + y = \pi$$

    Hence, option 'A' is correct.
  • Question 8
    1 / -0
    If $$3\sin ^{2}\theta +2\sin ^{2}\phi=0 $$ and $$3\sin 2\theta +2\sin 2\phi=0$$, $$0< \theta < \frac{\pi }{2}$$ and $$0< \phi  < \frac{\pi }{2}$$, then the value of $$\theta +2\phi $$
    Solution

  • Question 9
    1 / -0
    if $$\displaystyle x,y\epsilon \left [ 0,2\pi  \right ]$$ and $$\displaystyle \sin x+\sin y=2$$ then the value of $$ x+y$$ is
    Solution
    $$ sinx + siny = 2$$

    but we know that maximum value of $$sinx$$ is 1

    hence only solution is $$ sinx = 1 $$ and $$siny = 1$$

    so in $$0 \leq x \leq 2\pi, 0 \leq y \leq 2\pi $$

    solution is $$ x = \dfrac{\pi}{2}, y = \dfrac{\pi}{2} $$

    therefore,

    $$ x + y = \pi$$
  • Question 10
    1 / -0
    The number of solutions of the equation $$\displaystyle  \cos 6x+\tan ^{2}x+\cos 6x\cdot \tan ^{2}x= 1$$ in the interval $$\displaystyle \left [ 0 ,2\pi  \right ]$$ is
    Solution
    $$ cos6x + tan^2x +cos6x.tan^2x = 1$$

    $$\Rightarrow  cos6x(1 + tan^2x) = (1 -  tan^2x) \Rightarrow cos6x = \dfrac{1 - tan^2x}{1 + tan^2x} $$

    $$\Rightarrow cos6x = cos2x $$          $$[\because \sin 2A=\dfrac {2 \tan A}{1+ \tan^2A}$$, $$\cos 2A=\dfrac {1- \tan^2A}{1+ \tan^2A}]$$

    Threrefore general solution is,

    $$ 6x = 2n\pi \pm 2x $$,  where $$n$$ is any integer

    $$ x = \dfrac{n\pi}{2} $$ and $$ x = \dfrac{n\pi}{4}$$

    Hence solutions in the given interval are,

    $$ x = 0, \dfrac{\pi}{4}, \dfrac{\pi}{2},  \dfrac{3\pi}{4}, \pi,  \dfrac{3\pi}{4}, 2\pi $$ , total $$7$$ solutions.


Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now