Self Studies

Trigonometric Functions Test -1

Result Self Studies

Trigonometric Functions Test -1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$(\cos A + \sin A)^2 - (\cos A - \sin A)^2$$ is equal to
    Solution

    Expanding the given expression we get

    $$(\cos A+\sin A)\:^2-(\cos A+\sin A)\:^2$$

    $$=\cos A\:^2+\sin A\:^2+2\cos A \sin A-(\cos A\:^2+\sin A\:^2-2\cos A \sin A)$$

    $$=2(2\cos A \sin A)$$

    $$=4 \cos  A \sin  A$$

    Hence, option D is correct. 

  • Question 2
    1 / -0
    If $$\alpha + \beta =90^0$$ and $$\alpha = 2\beta,$$ then $$\cos^2 \alpha + \sin^2 \beta$$ equals to
    Solution

    $$\alpha+\beta=90^0$$ ...(i)

    $$\alpha-2\beta=0$$ ...(ii)

    Subtracting ii from i we get

    $$3\beta=90^0$$

    $$\beta=30^0$$

    Therefore

    $$\cos^2\alpha+\sin ^2\beta$$

    $$=\cos^2(90^0-\beta)+\sin ^2\beta$$ ...from(i)

    $$=\sin ^2\beta+\sin ^2\beta$$

    $$=2\sin ^2\beta$$

    Substituting the value of $$\beta$$ we get

    $$2\sin ^2\beta=2(\dfrac{1}{2})\:^2$$

    $$=\dfrac{1}{2}$$

    Hence the answer is A

  • Question 3
    1 / -0
    Total number of solution of $$\sin x=x+\dfrac {1}{x} x\epsilon (0, 2\pi)$$, is equal to-
    Solution
    As we know $$AM >= GM$$
    $$\sin x=x+\dfrac {1}{x}, x\epsilon (0, 2\pi)$$R. H. S, $$x+\dfrac {1}{x}\geq 2$$
    While $$\sin x\leq 1$$
    Option B
  • Question 4
    1 / -0
    If $$\sin$$$$\beta=\dfrac{12}{13},$$then the value of $$\dfrac{13\sin\beta+5 \sec\beta}{5\tan\beta+6 \csc\beta}$$
    Solution
    $$\sin\beta=\dfrac{12}{13}$$

    $$\cos\beta=\sqrt{1-sin^2\beta}=\dfrac{5}{13}$$

    Hence $$\tan\beta=\dfrac{12}{5}$$

    Therefore

    $$\dfrac{13\sin\beta+5\sec\beta}{5\tan\beta+6\csc\beta}$$

    $$=\dfrac{12+13}{12+\dfrac{13}{2}}$$

    $$=\dfrac{50}{37}$$

    Hence answer is C
  • Question 5
    1 / -0
    Th value of $$(\sin \theta + \csc \theta)^2 + (\cos\theta + \sec \theta)^2 - (\tan^2 \theta+\cot^2 \theta)$$ is

    Solution

    By expanding the expression we get

    $$(\sin\theta+\csc\theta)\:^2+(\cos\theta+sec\theta)\:^2-(\tan^2\theta+cot^2\theta)$$

    $$=\sin^2\theta+\csc^2\theta+2+sec^2\theta+\cos^2\theta+2-\tan^2\theta-cot^2\theta$$

    $$=4+(\sin^2\theta+\cos^2\theta)+(\csc^2\theta-cot^2\theta)+(sec^2\theta-\tan^2\theta)$$

    $$=4+1+1+1=7$$

    Hence answer is D

  • Question 6
    1 / -0
    If $$\tan \alpha=2\sqrt{2},$$ then the value of $$\dfrac{\tan\alpha}{\dfrac{\sin^{3}\alpha}{\cos\alpha}+\sin\alpha.\cos\alpha}$$ is
    Solution

    Simplifying the given expression we get

    $$\dfrac{\dfrac{\sin\alpha}{\cos\alpha}}{\sin^2\alpha\:\tan\alpha+\sin\alpha \cos\alpha}$$

    $$=\dfrac{\sin\alpha}{(\sin\alpha\:\cos\alpha)(\sin\alpha\:\tan\alpha+\cos\alpha)}$$ ...(taking $$\sin\alpha$$ common from the denominator)

    $$=\dfrac{1}{\sin\alpha\:\tan\alpha\:\cos\alpha+\cos^2\alpha}$$

    $$=\dfrac{1}{\sin^2\alpha+\cos^2\alpha}$$

    $$=1$$

    Hence answer is D

  • Question 7
    1 / -0
    If $$\cos A$$ $$=$$ 2 sin A, find the value of  $$cosec A$$.

    Solution

    $$\cos A=2\sin A$$

    Dividing by $$\sin A $$on both the sides we get

    $$\cot A=2$$ ...(i)

    $$cosec^2A=1+\cot^2A$$

    $$cosec^2A=1+2^2$$ ...(from i )

    $$cosec^2A=5$$

    Therefore

    $$cosec A=\pm\sqrt{5}$$

    Hence answer is B

  • Question 8
    1 / -0
    The value of $$\sin^6 \theta+\cos^6 \theta+3 \sin^2\theta.\cos^2\theta$$ is

    Solution

    $$(\sin^2\theta+\cos^2\theta)\:^3=1$$

    $$\sin^6\theta+\cos^6\theta+3\sin^2\theta \cos^2\theta(\sin^2\theta+\cos^2\theta)=1$$

    $$\sin^6\theta+\cos^6\theta+3\sin^2\theta \cos^2\theta(1)=1$$

    Hence answer is C

  • Question 9
    1 / -0
    If $$x, y \in [0,2\pi]$$, then total number of ordered pairs $$(x, y)$$ satisfying the equation $$\sin x.\cos y=1$$ is equal to
    Solution
    $$\sin x. \cos y =1 $$
    $$ \Rightarrow \sin x=1 , \cos y =1 $$ or $$\sin x =- 1 , \cos y = -1$$
    Hence, the ordered pairs of $$(x,y)$$ are $$(\displaystyle \frac {\pi}{2} , 0)$$ ,  $$ (\displaystyle \frac {\pi}{2} , 2\pi)$$ ,$$ ( \displaystyle \frac {3\pi}{2} , \pi) $$
  • Question 10
    1 / -0
    The set of angles between $$0$$ & $$2\pi$$ satisfying the equation $$4 \cos^2\theta -2\sqrt 2 \cos\theta-1=0$$ is-
    Solution

    $$4 \cos ^2\theta -2\sqrt 2 \cos \theta-1=0$$
    $$\cos \theta=\dfrac  {2\sqrt 2\pm \sqrt {8+16}}{8}=\dfrac  {\sqrt 2\pm \sqrt 6}{4}$$
    $$\cos \theta =\dfrac  {\sqrt 6+\sqrt 2}{4}$$
    $$\Rightarrow \theta =\dfrac  {\pi}{12}; 2\pi -\dfrac  {\pi}{12}=\dfrac  {23\pi}{12}$$
    $$\cos \theta=-\dfrac  {\sqrt 6-\sqrt 2}{4}$$
    $$\cos \theta =\cos (\pi -\dfrac{5\pi}{12}); \cos (\pi +\dfrac{5\pi}{12})$$
    $$\theta=\dfrac{7\pi}{12}; \dfrac{17\pi }{12}$$
    Hence option B is the correct option

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now