Self Studies

Trigonometric Functions Test 10

Result Self Studies

Trigonometric Functions Test 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\cos ^{ -1 }{ \left( \cfrac { p }{ a }  \right)  } +\cos ^{ -1 }{ \left( \cfrac { p }{ b }  \right)  } =\alpha $$, then $$\cfrac { { p }^{ 2 } }{ { a }^{ 2 } } +k\cos { \alpha  } +\cfrac { { p }^{ 2 } }{ { b }^{ 2 } } =\sin ^{ 2 }{ \alpha  } $$, where $$k$$ is equal to
    Solution
    Given, $$\cos ^{ -1 }{ \left( \cfrac { p }{ a }  \right)  } +\cos ^{ -1 }{ \left( \cfrac { q }{ b }  \right)  } =\alpha \quad $$

    $$\Rightarrow \cos ^{ -1 }{ \left[ \cfrac { p }{ a } .\cfrac { q }{ b } -\sqrt { \left( 1-\cfrac { { p }^{ 2 } }{ { a }^{ 2 } }  \right)  } \sqrt { \left( 1-\cfrac { { q }^{ 2 } }{ { b }^{ 2 } }  \right)  }  \right]  } =\alpha \quad \quad $$

    $$\Rightarrow \cfrac { pq }{ ab } -\sqrt { \left( 1-\cfrac { { p }^{ 2 } }{ { a }^{ 2 } }  \right) \left( 1-\cfrac { { q }^{ 2 } }{ { b }^{ 2 } }  \right)  } =\cos { \alpha  } $$

    $$\Rightarrow { \left( \cfrac { pq }{ ab } -\cos { \alpha  }  \right)  }^{ 2 }=1-\cfrac { { p }^{ 2 } }{ { a }^{ 2 } } -\cfrac { { q }^{ 2 } }{ { b }^{ 2 } } +\cfrac { { p }^{ 2 }{ q }^{ 2 } }{ { a }^{ 2 }{ b }^{ 2 } } =\cfrac { { p }^{ 2 }{ q }^{ 2 } }{ { a }^{ 2 }{ b }^{ 2 } } +\cos ^{ 2 }{ \alpha  } -\cfrac { 2pq\cos { \alpha  }  }{ ab } $$

    $$\Rightarrow \cfrac { { p }^{ 2 } }{ { a }^{ 2 } } -\cfrac { 2pq }{ ab } \cos { \alpha  } +\cfrac { { q }^{ 2 } }{ { b }^{ 2 } } =1-\cos ^{ 2 }{ \alpha  } =\sin ^{ 2 }{ \alpha  } $$
    But $$\cfrac { { p }^{ 2 } }{ { a }^{ 2 } } +k\cos { \alpha  } +\cfrac { { q }^{ 2 } }{ { b }^{ 2 } } =\sin ^{ 2 }{ \alpha  } $$

    $$\Rightarrow  k=-\cfrac { 2pq }{ ab } $$
  • Question 2
    1 / -0
    If $$\cos { \alpha  } +\cos { \beta  } +\cos { \gamma  } =\sin { \alpha  } +\sin { \beta  } +\sin { \gamma  } =0$$, then the value of $$\cos { 3\alpha  } +\cos { 3\beta  } +\cos { 3\gamma  } $$ is
    Solution
    Let $$a=\cos { \alpha  } +i\sin { \alpha  } ,b=\cos { \beta  } +i\sin { \beta  } ,c=\cos { \gamma  } +i\sin { \gamma  } $$

    The, $$a+b+c=\left( \cos { \alpha  } +\cos { \beta  } +\cos { \gamma  }  \right) +i\left( \sin { \alpha  } +\sin { \beta  } +\sin { \gamma  }  \right) =0+i0=0$$

    $$\Rightarrow { a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 }=3abc$$

    $$\Rightarrow \left( \cos { 3\alpha  } +i\sin { 3\alpha  }  \right) +\left( \cos { 3\beta  } +i\sin { \beta  }  \right) +\left( \cos { 3\gamma  } +i\sin { 3\gamma  }  \right) $$

    $$=3\left[ \cos { \left( \alpha +\beta +\gamma  \right)  } +i\sin { (\alpha +\beta +\gamma ) }  \right] $$

    by equating the real components

    $$\Rightarrow \cos { 3\alpha  } +\cos { 3\beta  } +\cos { 3\gamma  } =3\cos { \left( \alpha +\beta +\gamma  \right)  } $$
  • Question 3
    1 / -0
    If $$2\sin^{2}\theta + \sqrt {3}\cos \theta + 1 = 0$$, then the value of $$\theta$$ is
    Solution
    Given, $$2\sin^{2}\theta + \sqrt {3}\cos \theta + 1 = 0$$
    $$\Rightarrow 2(1 - \cos^{2}\theta) + \sqrt {3}\cos \theta + 1 = 0$$
    $$\Rightarrow 2\cos^{2}\theta - \sqrt {3}\cos \theta - 3 = 0$$
    $$\therefore \cos \theta = \dfrac {\sqrt {3} \pm \sqrt {3 + 4 \times 3\times 2}}{2\times 2}$$
    $$= \dfrac {\sqrt {3} \pm 3\sqrt {3}}{4}$$
    $$\Rightarrow \cos \theta = - \dfrac {\sqrt {3}}{2}$$
    and $$\cos \theta = \sqrt {3}$$
    $$\therefore \cos \theta = -\dfrac {\sqrt {3}}{2}$$
    $$(\because \cos \theta$$ cannot be greater than $$1$$)
    $$\Rightarrow \theta = \dfrac {5\pi}{6}$$.
  • Question 4
    1 / -0
    The set of values of a for which the equation $$\sin x(\sin x+\cos x)=a$$ has real solutions is
    Solution
    We have,
    $$\sin x(\sin x+\cos x)=a$$
    $$\Rightarrow 2\sin^2x+2\sin x\cos x=2a$$
    $$\Rightarrow 1-\cos 2x+\sin 2x=2a$$
    $$\Rightarrow \sin 2x-\cos 2x=2a-1$$
    This equation will have real solutions, if
    $$|2a-1|\leq \sqrt{1+1}$$
    $$\Rightarrow 1-\sqrt{2}\leq 2a\leq 1+\sqrt{2}$$
    $$\Rightarrow a\epsilon\left[\displaystyle\frac{1-\sqrt{2}}{2}, \frac{1+\sqrt{2}}{2}\right]$$
  • Question 5
    1 / -0
    The value of $$\cos ^{ 4 }{ \left( \cfrac { \pi  }{ 8 }  \right)  } +\cos ^{ 4 }{ \left( \cfrac { 3\pi  }{ 8 }  \right)  } +\cos ^{ 4 }{ \left( \cfrac { 5\pi  }{ 8 }  \right)  } +\cos ^{ 4 }{ \left( \cfrac { 7\pi  }{ 8 }  \right)  } $$ is
    Solution
    Since $$\boxed{\cfrac { 1+\cos 2{ \theta  }  }{ 2 } =\cos ^{ 2 }{ \theta  }} $$

    $$\Rightarrow \cos^4(\dfrac{\pi}{8})={ \left[ \cfrac { 1+\cos { (2\pi /8) }  }{ 2 }  \right]  }^{ 2 }={ \left[ \cfrac { 1+\cos { (\pi /4) }  }{ 2 }  \right]  }^{ 2 }$$

    Similarly
    $$\cos ^{ 4 }{ \cfrac { 3\pi  }{ 8 }  } ={ \left[ \cfrac { 1+\cos { (3\pi /4) }  }{ 2 }  \right]  }^{ 2 }$$
    $$\cos ^{ 4 }{ \cfrac { 5\pi  }{ 8 }  } ={ \left[ \cfrac { 1+\cos { (5\pi /4) }  }{ 2 }  \right]  }^{ 2 }$$
    $$\cos ^{ 4 }{ \cfrac { 7\pi  }{ 8 }  } ={ \left[ \cfrac { 1+\cos { (7\pi /4) }  }{ 2 }  \right]  }^{ 2 }$$
    $$\therefore$$ Given expression will become
    $$\cfrac { 1 }{ 4 } \left[ 2{ \left( 1+\cfrac { 1 }{ \sqrt { 2 }  }  \right)  }^{ 2 }+2{ \left( 1+\cfrac { 1 }{ \sqrt { 2 }  }  \right)  }^{ 2 } \right] =\cfrac { 1 }{ 4 } \times 2(2+1)=\cfrac { 1 }{ 4 } \times 2\times 3=\cfrac { 3 }{ 2 } $$
  • Question 6
    1 / -0
    Which one of the following equations has no solution?
    Solution
    (a) $$\csc { \theta  } -\sec { \theta  } =\csc { \theta  } \cdot \sec { \theta  }$$
    $$\Rightarrow \dfrac { \cos { \theta  } -\sin { \theta  }  }{ \cos { \theta  } \sin { \theta  }  } =\dfrac { 1 }{ \cos { \theta  } \sin { \theta  }  } $$
    $$\Rightarrow \cos { \theta  } =1+\sin { \theta  } $$
    At $$\theta =0$$ above equation satisfies.
    (b) $$\csc { \theta  } \cdot \sec { \theta  } =1$$
    $$\Rightarrow \sin { \theta  } \cos { \theta  } =1$$
    $$\Rightarrow 2\sin { \theta  } \cos { \theta  } =2$$
    $$\Rightarrow \sin { 2\theta  } =2$$
    As we know $$\sin { \theta  } $$ is not greater than $$1$$.
    Therefore, the above equation has no solution exist.
  • Question 7
    1 / -0
    One of the principal solutions of $$ \sqrt3 \sec x = - 2 $$ is equal to :
    Solution
    Given, $$ \sqrt3 \sec x = - 2 $$
    $$ \Rightarrow \sec x = - \dfrac {2}{\sqrt3} $$
    $$ \Rightarrow \cos x = - \dfrac {\sqrt3}{2} = - \cos \dfrac {\pi}{6} $$
    $$ \Rightarrow x = \pi - \dfrac {\pi}{6} $$
    $$ \Rightarrow x = \dfrac {5\pi}{6} $$
  • Question 8
    1 / -0
    The number of solutions of the equation $$\sin\theta +\cos\theta =\sin 2\theta$$ in the interval $$[-\pi, \pi]$$ is?
    Solution
    $$\sin\theta +\cos \theta=\sin 2\theta=(\sin\theta+\cos \theta)^2-1$$

    $$ \\ \Rightarrow (sin\theta+\cos\theta)^2-(\sin\theta+\cos\theta)-1=0$$

    $$\therefore sin\theta+\cos\theta=\dfrac{1-\sqrt5}{2}$$

    $$\Rightarrow\cos(\pi/4-\theta)=\dfrac{1-\sqrt5}{2}=-\dfrac{(\sqrt5-1)}{2}$$

    Thus, there are two possible solutions for $$\theta$$ between $$-\pi $$ to $$\pi$$.
  • Question 9
    1 / -0
    Let $$X = \left \{x\epsilon \mathbb {R} : \cos (\sin x) = \sin (\cos x)\right \}$$. The number of solutions of $$X$$ is?
    Solution
    $$\cos (\sin x)=\sin (\cos x)\implies \cos (\sin x)=\cos (\dfrac{\pi}{2}-\cos x)$$
    $$\sin x=\dfrac{\pi}{2}-\cos x\implies \sin x+\cos x=\dfrac{\pi}{2}=1.72$$
    But $$\sin x+\cos x$$ maximum value is $$\sqrt{2}=1.414$$
    So $$\sin x+\cos x\neq \dfrac{\pi}{2}$$
    Number of solutions of $$X$$ is $$0$$
  • Question 10
    1 / -0
    The number of real solutions of the equation $$2\sin 3x+\sin 7x-3=0$$ which lie in the interval $$[-2\pi, 2\pi]$$ is?
    Solution
    $$2\text{ sin}3x+\text{ sin}7x=3$$

    For this to be true, both  $$\text{sin}3x$$  and  $$\text{sin}7x$$  must be equal to $$1$$

    Now,
    For  $$\text{ sin}3x=1$$

    $$\Rightarrow x=\dfrac{\pi}{6},\dfrac{5\pi}{6},\dfrac{9\pi}{6},\dfrac{-\pi}{2},\dfrac{-7\pi}{6},\dfrac{-11\pi}{6}$$

    For  $$\text{ sin}7x=1$$
    $$\Rightarrow x=\dfrac{(4n+1)\pi}{14}$$ for $$n=0,1,2,3,4,5,6$$
             
    $$=-\dfrac{(4n-1)\pi}{14}$$ for $$n=1,2,3,4,5,6,7$$

    So, only possible values of $$x$$ are $$\dfrac{3\pi}{2}$$ and $$\dfrac{-\pi}{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now