Self Studies

Trigonometric Functions Test 11

Result Self Studies

Trigonometric Functions Test 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The principal solution of $$\sec x = \dfrac {2}{\sqrt {3}}$$ are
    Solution
    Given $$\sec x = \dfrac {2}{\sqrt {3}}$$
    We know that, $$\sec\: \dfrac{\pi}{6}=\dfrac{2}{\sqrt{3}}$$ also $$\sec \left(2\pi-\dfrac{\pi}{6}\right)=\sec\: \dfrac{11\pi}{6}=\dfrac{2}{\sqrt{3}}$$

    Therefore the principal solutions are $$\dfrac{\pi}{6}, \dfrac{11\pi}{6}$$
  • Question 2
    1 / -0
    If $$\sin x =$$ $$\cos^2x$$, then $$\cos^2x (1 + \cos^2x)$$ is equal to 
    Solution
    Given, $$\sin x=\cos^2x$$
    Thus $$\sin x=1-\sin ^2x$$
    $$\Rightarrow \sin ^2x+\sin x=1$$     ....(1)
    We need to find value of $$\cos^2x(1+\cos^2x)$$
    $$ \Rightarrow \sin x(1+\sin x)$$
    $$ \Rightarrow \sin x+\sin^2 x$$
    From the equation (1), we have
    $$\sin x+\sin^2x=1$$
    Option B is correct.
  • Question 3
    1 / -0
    Find the value of $$\tan { 1 } \tan { 2 } ....\tan { 89 } $$
    Solution
    $$\tan 1\cdot \tan 2.....\tan 89$$
    but $$\tan 89$$ can be written as $$\cot 1[\tan (90-1)=\cot 1]$$ by $$\tan(90-\theta)=\cot(\theta)$$
    likewise...,
    $$\tan 88=\cot 2$$
    $$\tan 87=\cot 3$$
    ....... up to $$\tan 46=\cot 44$$
    then middle one is $$\tan 45=1$$
    so it is
    $$\tan 1\cdot \tan 2....\tan 44\cdot \tan 45\cdot \cot 44.....\cot 1$$
    $$\tan$$ and $$\cot$$ cancel out by$$[\tan(\theta)^{\ast}\cot(\theta)=1]$$
    so, remaining is $$1$$
    answer$$=1$$.

  • Question 4
    1 / -0
    The number of solution of the equation $$\tan x + \sec x = 2\cos x$$ lying in the interval $$[0, 2\pi]$$ is
    Solution
    $$\tan{x}+\sec{ x}=2\cos{x}$$

    $$\Rightarrow$$ $$ \dfrac{\sin {x}}{\cos {x}} +\dfrac {1}{\cos{x}}=2 \cos{x}$$

    $$\Rightarrow$$ $$\dfrac{(\sin{x}+1)}{\cos{x}} = 2\cos{x}$$ 

    $$\Rightarrow$$ $$1+\sin{x}=2 {(\cos{x})}^{2}$$

    $$\Rightarrow$$ $$1+\sin{x}=2(1-{(\sin{x})}^{2})$$ 

    $$\Rightarrow$$ $$1+\sin{x} -2(1+\sin{x})(1-\sin{x})=0$$

    $$\Rightarrow$$ $$(1+\sin{x})(1-2(1-\sin{x}))=0$$

    $$\Rightarrow$$ $$(1+\sin{x})(2\sin{x}-1)=0$$

    $$\Rightarrow$$ $$\sin{x}=1, \sin{x}=\dfrac{1}{2}$$

    Since, $$x$$ is between $$[0,2\pi]$$, 

    The solutions are $$ x=\dfrac{3\pi}{2}, x=\dfrac{\pi}{6}, x=\dfrac{5\pi}{6}$$.

    Therefore there are 3 solutions.
  • Question 5
    1 / -0
    The equation $$2\tan { x } +5x-2=0$$ has:
    Solution
    Given that

    $$ 2 \tan x + 5x -2 = 0$$

    $$ \tan x = \dfrac{-5}{2}x + 1$$

    The functions $$ y = \tan x $$ and $$ y = \dfrac{-5}{2}x + 1$$ can be plotted on the same graph.

    The solution to the equation $$ \tan x = \dfrac{-5}{2}x + 1$$ will be at the intersection of the two curves. 

    The graph is given in the figure above.

    From the graph, it is seen that the line intersects the x-axis at 
    $$ x = \dfrac{2}{5} $$. 
    For some $$x$$ such that $$ 0 < x <\dfrac{2}{5} $$, the 2 curves meet.

    Since $$ 0 <\dfrac{2}{5} < \dfrac{\pi}{4} $$,
    Hence, B is true, i.e there is at least one real solution in $$\left[0, \dfrac{\pi}{4}\right]$$.

  • Question 6
    1 / -0
    The expression $${ \left( \tan { \theta  } +\sec { \theta  }  \right)  }^{ 2 } $$is equal to
    Solution
    $$ { \left( \tan\theta +\sec\theta  \right)  }^{ 2 }$$
    $$= { \left( \dfrac { \sin\theta +1 }{ \cos\theta  }  \right)  }^{ 2 }$$
    $$=\dfrac { 1+{ \sin }^{ 2 }\theta +2sin\theta  }{ { \cos }^{ 2 }\theta  } $$
    $$=\dfrac { \left( 1+\sin\theta  \right) \left( 1+\sin\theta  \right)  }{ 1-{ \sin }^{ 2 }\theta  } $$
    $$= \dfrac { \left( 1+\sin\theta  \right) \left( 1+\sin\theta  \right)  }{ \left( 1-\sin\theta  \right) \left( 1+\sin\theta  \right)  } $$
    $$= \dfrac { 1+\sin\theta  }{ 1-\sin\theta  } $$.
  • Question 7
    1 / -0
    If $$\sin { \theta } =\cfrac { 8 }{ 17 } $$ where $${ 0 }^{ o }<\theta <{ 90 }^{ o }$$, then $$\tan { \theta  } +\sec { \theta  } $$ is
    Solution
    $$\sin\theta =8/17,\quad \tan\theta =\dfrac { sin\theta  }{ \sqrt { 1-{ sin }^{ 2 }\theta  }  } =8/15$$
    $$\sec\theta =\dfrac { 1 }{ \cos\theta  } =\dfrac { 1 }{ \sqrt { 1-{ 
    \sin }^{ 2 }\theta  }  } =\dfrac { 17 }{ 15 } $$
    $$\tan\theta +\sec\theta =\dfrac { 8 }{ 15 } +\dfrac { 17 }{ 15 } =\dfrac { 25 }{ 15 } =\dfrac { 5 }{ 3 } $$
  • Question 8
    1 / -0
    $$\sec^26 + \text{cosec}^26 $$ is equal to:
    Solution
    $$ { \sec }^{ 2 }6+ \text{ cosec}^{ 2 }6$$

    $$= \dfrac { 1 }{ { \cos }^{ 2 }6 } +\dfrac { 1 }{ { \sin }^{ 2 }6 } $$

    $$= \dfrac { { \sin }^{ 2 }6+{ \cos }^{ 2 }6 }{ { \sin }^{ 2 }6{ \cos }^{ 2 }6 } $$

    $$={ \sec }^{ 2 }6 \text{ cosec}^{ 2 }6$$
  • Question 9
    1 / -0
    $$\sin { \theta  } +\cos { \theta  } =\sqrt { 2 } $$ and $$\theta$$ is acute, then $$\tan{\theta}$$ is
    Solution
    $$\sin { \theta  } +\cos { \theta  } =\sqrt { 2 } $$
    $$\Rightarrow \sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } +2\sin { \theta  } \cos { \theta  } =2\quad \Rightarrow 2\sin { \theta  } \cos { \theta  } =1\quad $$
    $$\Rightarrow \sin { 2\theta  } =1\Rightarrow \cfrac { 2\tan ^{ 2 }{ \theta  }  }{ 1+\tan ^{ 2 }{ \theta  }  } =1\Rightarrow \tan ^{ 2 }{ \theta  }=1 \Rightarrow \tan { \theta =\pm 1\quad  } $$
    since $$\theta$$ is acute $$\Rightarrow \tan { \theta  } =1$$
  • Question 10
    1 / -0
    $$\dfrac {\tan \theta}{1 +\tan^{2} \theta} + \dfrac {\cot \theta}{(1 + \cot^{2}\theta)^{2}}$$ is equal to
    Solution
    $$\dfrac {\tan \theta}{(1 + \tan^{2}\theta)^{2}} + \dfrac {\cot \theta}{(1 + \cot^{2}\theta)^{2}} = \dfrac {\tan \theta}{\sec^{4}\theta} + \dfrac {\cot \theta}{\text{cosec}^{4}\theta}$$

    $$= \dfrac {\text{cosec} \theta \sec \theta \left (\dfrac {1}{\sin^{2}\theta} + \dfrac {1}{\cos^{2}\theta}\right )}{\sec^{4}\theta \text{cosec}^{4}\theta} = \dfrac {\sec^{2}\theta \text{cosec}^{2}\theta}{\sec^{3} \theta \text{cosec}^{3}\theta} = \sin \theta \cos \theta$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now