Self Studies

Trigonometric Functions Test 13

Result Self Studies

Trigonometric Functions Test 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Solve:
    $$\dfrac{\cot \theta+\text{cosec }\theta-1}{\cot\theta-\text{cosec }\theta+1}$$
    Solution

    $$\dfrac{\cot \theta+ \text{cosec }\theta-1}{\cot \theta-\text{cosec }\theta+1}$$

    $$=\dfrac{\cot \theta+\text{cosec }\theta-( \text{cosec}^2 \theta-\cot^2\, \theta)}{\cot \theta-\text{cosec }\theta+1}$$

    $$=\dfrac{(\cot \theta+\text{cosec }\theta)[1+\cot \theta-\text{cosec }\theta]}{1+\cot \theta-\text{cosec }\theta}$$

    $$=\cot \theta+\text{cosec }\theta$$

    $$=\dfrac{\cos\,\theta}{\sin \theta}+\dfrac{1}{\sin \theta}$$

    $$=\dfrac{1+\cos\,\theta}{\sin\,\theta}$$

  • Question 2
    1 / -0
    If $$\cos { \theta  } -\sin { \theta  } =\sqrt { 2 } \sin { \theta  } $$, then $$\cos { \theta  } +\sin { \theta  } $$ is
    Solution
    $$\rightarrow { \left( \sin \theta +\cos \theta  \right)  }^{ 2 }+{ \left( \sin \theta -\cos \theta  \right)  }^{ 2 }=2$$
    $$\rightarrow { \left( \sin \theta +\cos \theta  \right)  }^{ 2 }+2{ \sin  }^{ 2 }\theta =2\Rightarrow \sin \theta +\cos \theta =\sqrt { 2-2{ \sin  }^{ 2 }\theta  } $$
    $$\rightarrow \left( \sin \theta +\cos \theta  \right) =\sqrt { 2 } \cos \theta $$
  • Question 3
    1 / -0
    $$\tan { \theta  } \left( 1-\cot ^{ 2 }{ \theta  }  \right) $$ is equal to
    Solution
    $$\rightarrow \tan\theta \left( 1-{ cot }^{ 2 }\theta  \right) $$
    $$\rightarrow \dfrac { 1 }{ \cot\theta  } \left( 1-\dfrac { 1 }{ { \tan }^{ 2 }\theta  }  \right) $$
    $$\rightarrow \dfrac { 1 }{ \cot\theta .{ \tan }^{ 2 }\theta  } \left( { \tan }^{ 2 }\theta -1 \right) $$
    $$\rightarrow \cot\theta \left( { \tan }^{ 2 }\theta -1 \right) $$
  • Question 4
    1 / -0
    The value of 
    $$\cos { \left( \pi /5 \right)  } \cos { \left( 2\pi /5 \right)  } \cos { \left( 4\pi /5 \right)  } \cos { \left( 8\pi /5 \right)  } $$ is 
    Solution
    $$\cos { \left( \pi /5 \right)  } \cos { \left( 2\pi /5 \right)  } \cos { \left( 4\pi /5 \right)  } \cos { \left( 8\pi /5 \right)  } =\cfrac { 1 }{ { 2 }^{ 4 }\sin { \left( \pi /5 \right)  }  } \sin { \cfrac { { 2 }^{ 4 }\pi  }{ 5 }  } $$
    $$=-\cfrac { 1 }{ 16 } \left[ \because\quad \sin { \cfrac { 16\pi  }{ 5 } =\sin { \left( 3\pi +\cfrac { \pi  }{ 5 }  \right)  } =-\sin { \cfrac { \pi  }{ 5 }  }  }  \right] $$ 
  • Question 5
    1 / -0
    If $$2\cos A+3\cos  B+5\cos C$$$$=2\sin A+3\sin B+5\sin C=0$$ then
    $$8\cos 3A+27\cos 3B+125\cos C$$$$=k\cos(A+B+C)$$  then $$k=$$
    Solution
    $$\Rightarrow$$$$2\cos { A } +3\cos { B } +5\cos { C } =2\sin { A } +3\sin { B } +5\sin { C } =0$$

    $$\Rightarrow$$$$ \cos { \theta  } =\cfrac { 1 }{ 2 } ({ e }^{ j\theta  }+{ e }^{ -j\theta  })$$

    $$\Rightarrow$$$$ \sin { \theta  } =\cfrac { 1 }{ 2j } ({ e }^{ j\theta  }-{ e }^{ -j\theta  })$$

    $$ \therefore 2\cfrac { 1 }{ 2 } ({ e }^{ jA }+{ e }^{ -jA })+3\cfrac { 1 }{ 2 } ({ e }^{ jB }+{ e }^{ -jB })+5\cfrac { 1 }{ 2 } ({ e }^{ jC }+{ e }^{ -jC })=0$$

    $$\Rightarrow$$$$ 2({ e }^{ jA }+{ e }^{ -jA })+3({ e }^{ jB }+{ e }^{ -jB })+5({ e }^{ jC }+{ e }^{ -jC })=0\quad -(i)$$

     Also,$$\\ 2({ e }^{ jA }-{ e }^{ -jA })+3({ e }^{ jB }-{ e }^{ -jB })+5({ e }^{ jC }-{ e }^{ -jC })=0\quad -(ii)$$

    $$\Rightarrow$$As$$(i)-(ii)$$

    $$\Rightarrow$$$$ 4{ e }^{ -jA }+6{ e }^{ -jB }+10{ e }^{ -jC }=0$$

    $$\Rightarrow$$$$ 2{ e }^{ -jA }+3{ e }^{ -jB }+5{ e }^{ -jC }=0$$

    Cubing on both sides.
    $$\Rightarrow$$$$8{ e }^{ -j3A }+27{ e }^{ -j3B }+125{ e }^{ -j3C }+3({ e }^{ -jA }\times 2\times 3{ e }^{ -jB }.5{ e }^{ -jC })=0$$

    $$ \therefore 8{ e }^{ -j3A }+27{ e }^{ -j3B }+125{ e }^{ -j3C }=90{ e }^{ -jA }{ e }^{ -jB }{ e }^{ -jC }$$

    $$ \therefore k=90$$
  • Question 6
    1 / -0
    If $$\sin { \alpha  } =12/13\left( 0<\alpha <\pi /2 \right)$$ and
    $$\cos { \beta  } =-\dfrac { 3 }{ 5 } \left( \pi <\beta <\dfrac { 3 }{ 2 } \pi  \right) $$, the value of $$\sin { \left( \alpha +\beta  \right)  }$$ is
    Solution
    Ans. $$(a)$$ 
    Since $$0<\alpha <\pi$$ we have $$\sin { \alpha  }$$ =$$\dfrac{12}{13}$$
    $$\Rightarrow \cos { \alpha  } =\surd \left[ 1-{ \left( 12/13 \right)  }^{ 2 } \right] $$=$$\dfrac{5}{13}$$
    And since $$\pi <\beta <3\pi /2$$, we have $$\cos { \beta  } =-3/5\Rightarrow \sin { \beta  } =-4/5$$
    Hence $$\sin { \left( \alpha +\beta  \right)  } =\sin { \alpha  } \cos { \beta  } +\cos { \alpha  } \sin { \beta  }$$ 
    $$=\dfrac { 12 }{ 13 } \left( -\dfrac { 3 }{ 5 }  \right) +\left( \dfrac { 5 }{ 13 }  \right) \left( -\dfrac { 4 }{ 5 }  \right) =-\dfrac { 56 }{ 65 } $$
  • Question 7
    1 / -0
    If $$\sin \left(\sin^{-1}\dfrac{1}{5}+\cos ^{-1}x\right)=1$$, then find the value of $$x$$.
    Solution

    We have,

    $$ \sin \left( {{\sin }^{-1}}\dfrac{1}{5}+{{\cos }^{-1}}x \right)=1 $$

    $$ {{\sin }^{-1}}\dfrac{1}{5}+{{\cos }^{-1}}x={{\sin }^{-1}}1 $$

    $$ {{\sin }^{-1}}\dfrac{1}{5}+{{\cos }^{-1}}x=\dfrac{\pi }{2} $$

    $$ {{\sin }^{-1}}\dfrac{1}{5}=\dfrac{\pi }{2}-{{\cos }^{-1}}x $$

    $$ {{\sin }^{-1}}\dfrac{1}{5}={{\sin }^{-1}}x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\therefore \left( {{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2} \right) $$

    $$ x=\dfrac{1}{5} $$

     

    Hence, this is the answer.

  • Question 8
    1 / -0
    The maximum value of the expression $$\dfrac { 1 }{ \sin ^{ 2 }{ \theta  } +3\sin { \theta  } \cos { \theta  } +5\cos ^{ 2 }{ \theta  }  } $$ is 
    Solution
    Ans. Ans. $$(a)$$.
    $$f\left( \theta  \right) =\dfrac { 1 }{ \sin ^{ 2 }{ \theta  } +3\sin \theta \cos \theta +5\cos ^{ 2 }{ \theta  }  }$$
    $$=\dfrac { 1 }{ \dfrac { 1-\cos { 2\theta  }  }{ 2 } +\dfrac { 3 }{ 2 } \sin { 2\theta  } +\dfrac { 5\left( 1+\cos { 2\theta  }  \right)  }{ 2 }  } $$
    $$=\dfrac{ 2 }{ 6+3\sin 2\theta+4 \cos 2\theta }$$
    Hence, $$\left[ f\left( \theta  \right)  \right] _{ maximum }=\dfrac { 2 }{ 6-5 } =2$$
  • Question 9
    1 / -0
    The number of solutions of the pair of equations.
    $$2\sin^2\theta -\cos 2\theta =0$$
    $$2\cos^2\theta -3\sin \theta =0$$
    in the interval $$[0, 2\pi]$$ is?
    Solution
    From $$1$$st, $$2\sin^2\theta -(1-2\sin^2\theta)=0$$
    $$\therefore 4\sin^2\theta =1$$ or $$\sin\theta =\pm 1/2$$
    $$\therefore \theta =\pi/6, \pi +\pi/6$$ in $$[0, 2\pi]$$
    Also from $$2$$nd equation, we have
    $$2(1-\sin^2\theta)-3\sin\theta =0$$
    or $$2\sin^2\theta +3\sin\theta -2=0$$
    or $$(\sin \theta +2)(2\sin \theta -1)=0$$
    $$\therefore \sin\theta =1/2$$ as $$-2$$ is rejected
    $$\therefore \sin\theta =1/2$$ which in already included in $$1$$st. Hence there are only two solutions $$\Rightarrow$$ (c).
  • Question 10
    1 / -0
    If $$\alpha, \beta, \gamma, \delta$$ are the smallest $$+$$ive angles in ascending order of magnitude which have their sines equal to a $$+$$ive quantity $$\lambda$$ then the value of $$4\sin \dfrac{\alpha}{2}+3\sin \dfrac{\beta}{2}+2\sin \dfrac{\gamma}{2}+\sin \dfrac{\delta}{2}=$$.
    Solution
    Ans. (b)
    $$\sin\alpha =\lambda$$
    $$\theta =n\pi +(-1)^n\alpha$$
    For $$+$$ive values, $$n=0, 1, 2, 3$$
    $$\therefore \alpha =\alpha, \beta =\pi -\alpha, \gamma =2\pi +\alpha , \delta =3\pi -\alpha$$
    $$\therefore E=4\sin\dfrac{\alpha}{2}+3\sin\left(\dfrac{\pi}{2}-\dfrac{\alpha}{2}\right)+2\sin\left(\pi +\dfrac{\alpha}{2}\right)+\sin\left(\dfrac{3\pi}{2}-\dfrac{\alpha}{2}\right)$$
    $$=4\sin\dfrac{\alpha}{2}+3\cos\dfrac{\alpha}{2}-2\sin\dfrac{\alpha}{2}-\cos\dfrac{\alpha}{2}$$
    $$=2\left(\cos\dfrac{\alpha}{2}+\sin\dfrac{\alpha}{2}\right)=2\sqrt{\left(\cos \dfrac{\alpha}{2}+\sin\dfrac{\alpha}{2}\right)^2}$$
    $$=2\sqrt{1+\sin\alpha}=2\sqrt{1+\lambda}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now