$$x = h \cot 3 \alpha $$ ...............(i) $$(x + 100) = h \cot 2 \alpha $$ ............ (ii)
$$(x + 300) = h \cot \alpha $$ ............(iii)
From (i) and (ii) $$-100 = h (\cot 3 \alpha - \cot 2 \alpha) = h\dfrac{(sin2\alpha \ cos3\alpha - cos2\alpha \ sin3\alpha)}{sin3\alpha \ sin2\alpha} = \dfrac{sin(3\alpha - 2\alpha)}{sin3\alpha \ sin2\alpha}$$
Similarly,
From (ii) and (iii)
$$-200 = h (\cot 2 \alpha - \cot \alpha) = \dfrac{sin(2\alpha - \alpha)}{sin2\alpha \ sin\alpha} $$
$$100 = h \left (\dfrac{\sin \alpha}{\sin 3 \alpha \sin 2 \alpha} \right ) $$ on solving
$$200 = h \left (\dfrac{\sin \alpha}{\sin 2 \alpha \sin \alpha} \right ) $$ on solving
On dividing the above equations we get,
$$\dfrac{\sin 3 \alpha}{\sin \alpha} = \dfrac{200}{100} \Rightarrow \dfrac{\sin 3 \alpha}{\sin \alpha} = 2 $$ ......... (3)
We know that: $$sin3\alpha = 3sin\alpha - 4sin^3\alpha$$
From eq (3) we get $$\Rightarrow 3 \sin \alpha - 4 \sin^{3} \alpha - 2 \sin \alpha = 0$$
$$\Rightarrow 4 \sin^{3} \alpha - \sin \alpha = 0 \Rightarrow \sin \alpha = 0 $$ or $$ \sin^{2} \alpha = \dfrac{1}{4} $$
$$\sin^{2} \alpha = \dfrac{1}{4} = \sin^{2} \left (\dfrac{\pi}{6} \right ) \Rightarrow \alpha = \dfrac{\pi}{6} $$
Hence
$$h = 200 \ sin2\alpha= 200 \sin \dfrac{\pi}{3} = 200 \dfrac{\sqrt{3}}{2} = 100 \sqrt{3} $$
So the height of the balloon $$100 \sqrt{3} $$