Self Studies

Trigonometric Functions Test 14

Result Self Studies

Trigonometric Functions Test 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$2\sin^2\theta -5\sin \theta +2 > 0, \theta \in (0, 2\pi)$$, then $$\theta \in$$
    Solution
    $$(2\sin \theta -1)(\sin \theta -2) > 0$$
    $$\therefore \sin \theta < \dfrac{1}{2}=\sin \dfrac{\pi}{6}=\sin \left(\pi -\dfrac{\pi}{6}\right)=\sin \dfrac{5\pi}{6}$$
    $$\therefore \theta \in \left(0, \dfrac{\pi}{6}\right)$$ or $$\theta \in \left(\dfrac{5\pi}{6}, 2\pi\right)$$
    $$\therefore \theta \in \left(0, \dfrac{\pi}{6}\right)\cup \left(\dfrac{5\pi}{6}, 2\pi\right)$$.
  • Question 2
    1 / -0
    If $$0\leq x\leq \pi$$ and $$81^{\sin^2x}+81^{\cos^2x}=30$$, then x is equal to.
    Solution
    Put $$\cos^2x=1-\sin^2x$$
    If $$y=81^{\sin^2x}$$ then $$y+\dfrac{81}{y}=30$$
    $$y^2-30y+81=0$$, $$y=27, 3$$
    $$3^{4\sin^2x}=3^3, 3^1$$
    $$\therefore \sin^2x=\dfrac{3}{4}, \dfrac{1}{4}$$
    $$\therefore \sin x=\dfrac{\sqrt{3}}{2}, \dfrac{1}{2}$$
    as $$\sin x$$ is $$+$$ive in the given interval $$0 < x < \pi$$
    $$\therefore x=\dfrac{\pi}{3}, \pi -\dfrac{\pi}{3}=\dfrac{2\pi}{3}, \dfrac{\pi}{6}, \pi -\dfrac{\pi}{6}=\dfrac{5\pi}{6}$$.
  • Question 3
    1 / -0
    Solve: $$2(\cos x+\cos 2x)+\sin 2x(1+2\cos x)=2\sin x, -\pi \leq x \leq \pi$$.
    Solution
    $$2(\cos x+2\cos^2 x-1)+2\sin x\cos x. (1+2\cos x)-2\sin x=0$$
    or $$2(2\cos^2x+\cos x-1)+2\sin x(2\cos^2x+\cos x-1)=0$$
    $$2(1+\sin x)(\cos x+1)(2\cos x-1)=0$$
    We have to determine values of x s.t. $$-\pi \leq x\leq \pi$$
    $$1+\sin x=0$$ $$\therefore \sin x=-1$$
    $$\therefore x=2n\pi +\dfrac{3\pi}{2}$$  $$\therefore x=-\dfrac{\pi}{2}$$,
    for $$n=-1$$ $$\because -\pi \leq x < \pi$$
    $$\cos x=-1=\cos \pi$$ $$\therefore \cos x=1/2=\cos (\pi/3)$$
    $$\therefore x=2n\pi \pm \pi/3$$
    $$\therefore x=\pi /3$$, $$-\pi /3$$
    Hence the values of x s.t. $$-\pi \leq x \leq \pi$$ are
    $$-\pi, -\pi /2, -\pi /3, \pi/3, \pi$$.
  • Question 4
    1 / -0
    Solve $$\tan \theta +\sec \theta =\sqrt{3}; 0\leq \theta \leq 2\pi$$.
    Solution
    $$\tan\theta +sec\theta =\sqrt{3}$$
    $$\dfrac{1+\sin\theta}{\cos\theta}=\sqrt{3}$$
    $$\dfrac{\left(\cos\dfrac{\theta}{2}+\sin\dfrac{\theta}{2}\right)^2}{\cos^2\dfrac{\theta}{2}-\sin^2\dfrac{\theta}{2}}=\sqrt{3}$$
    or $$\dfrac{\cos\dfrac{\theta}{2}+\sin\dfrac{\theta}{2}}{\cos\dfrac{\theta}{2}-\sin\dfrac{\theta}{2}}=\sqrt{3}$$ or $$\dfrac{1+t}{1-t}=\sqrt{3}$$
    or $$\tan\left(\dfrac{\pi}{4} +\dfrac{\theta}{2}\right)=\tan\dfrac{\pi}{3}$$
    $$\therefore \dfrac{\theta}{2}+\dfrac{\pi}{4}=n\pi +\dfrac{\pi}{3}$$
    $$\therefore \theta =2n\pi +\dfrac{\pi}{6}$$.
  • Question 5
    1 / -0
    A balloon is observed simultaneously from three points A B and C, on a straight road directly under it. The angular elevation at B is twice of what it is at A and the angular elevation at C is thrice of what it is at A. If the distance between A and B is 200 meters and the distance between B and C is 100 meters, then find the height of the balloon.
    Solution
    $$x = h \cot 3 \alpha $$                          ...............(i)
    $$(x + 100) = h \cot 2 \alpha $$         ............ (ii)
    $$(x + 300) = h \cot \alpha $$            ............(iii) 

    From (i) and (ii) 
    $$-100 = h (\cot 3 \alpha - \cot 2 \alpha)  = h\dfrac{(sin2\alpha \ cos3\alpha - cos2\alpha \ sin3\alpha)}{sin3\alpha \ sin2\alpha} = \dfrac{sin(3\alpha - 2\alpha)}{sin3\alpha \ sin2\alpha}$$
    Similarly,
    From (ii) and (iii) 
    $$-200 = h (\cot 2 \alpha - \cot \alpha) = \dfrac{sin(2\alpha - \alpha)}{sin2\alpha \ sin\alpha} $$ 

    $$100 = h \left (\dfrac{\sin \alpha}{\sin 3 \alpha \sin 2 \alpha} \right ) $$    on solving

    $$200 = h \left (\dfrac{\sin \alpha}{\sin 2 \alpha \sin \alpha} \right ) $$       on solving

    On dividing the above equations we get, 

    $$\dfrac{\sin 3 \alpha}{\sin \alpha} = \dfrac{200}{100} \Rightarrow \dfrac{\sin 3 \alpha}{\sin \alpha} = 2 $$ ......... (3)

    We know that: $$sin3\alpha = 3sin\alpha - 4sin^3\alpha$$

    From eq (3) we get $$\Rightarrow 3 \sin \alpha - 4 \sin^{3} \alpha - 2 \sin \alpha = 0$$

    $$\Rightarrow 4 \sin^{3} \alpha - \sin \alpha = 0 \Rightarrow \sin \alpha = 0 $$ or $$ \sin^{2} \alpha = \dfrac{1}{4} $$ 

    $$\sin^{2} \alpha = \dfrac{1}{4} = \sin^{2} \left (\dfrac{\pi}{6} \right ) \Rightarrow \alpha = \dfrac{\pi}{6} $$ 

    Hence
    $$h = 200 \ sin2\alpha= 200 \sin \dfrac{\pi}{3} = 200 \dfrac{\sqrt{3}}{2} = 100 \sqrt{3} $$ 

    So the height of the balloon $$100 \sqrt{3} $$

  • Question 6
    1 / -0
    If $$P\left( 4 \right) = 3$$ and $$\displaystyle {\sin ^6}x + {\cos ^6}x = {a \over b}\left( {a,b \in N} \right)$$ and $$a,b$$ are relatively prime, then $$a + b$$ is equal to
    Solution

  • Question 7
    1 / -0
    The equation $${\sin ^6}x + {\cos ^6}x = {a^2}$$ has real solution if 
    Solution
    $$a^{2}=\sin^{6}x+\cos^{6}x$$
    $$\Rightarrow a^{2}=(\sin^{2}x+\cos^{2}x)(\sin^{4}x+\cos^{4}x-\sin^{2}x\cos^{2}x)$$
    $$\Rightarrow a^{2}=((\sin^{2}x+\cos^{2}x)^{2}-3\sin^{2}x \cos^{2}x)$$          as($$\sin^{2}x+\cos^{2}x=1)$$ 
    $$\Rightarrow a^{2}=(1-3\sin^{2}x\cos^{2}x)$$
    $$\Rightarrow a^{2}=(1-\cfrac{3}{4}\sin^{2}2x)$$
    $$\sin^{2}2x \in [0,1]$$
    $$\therefore 1-\cfrac{3}{4}\sin^{2}(2x) \in [\cfrac{1}{4},1]$$
    $$\cfrac{1}{4}\le a^{2} \le 1$$
    $$a \in [(-\infty,\cfrac{-1}{2}]\cup[\cfrac{1}{2}, \infty)]\cap[-1,1]$$
    $$ \therefore a\in[-1,\cfrac{-1}{2}]\cup[\cfrac{1}{2},1]$$
  • Question 8
    1 / -0
    If $$\sec A + \tan A = m $$ and $$ \sec A - \tan A = n$$, find the value of $$\sqrt{mn}$$.
    Solution
    Use trigonometry formula:
    $$sec^{2}\theta -tan^{2}\theta =1$$

    $$secA+tanA=m$$ ......(1)
    $$secA-tanA=n$$ .........(2)

    multiply the equations (1) and (2),
    $$\left ( secA+tanA \right )\left ( secA-tanA \right )=mn$$
    $$sec^{2}A-tan^{2}A=mn$$
    $$1=mn$$

    Therefore, $$\sqrt{mn}=\pm 1$$

  • Question 9
    1 / -0
    The most general value of $$\theta $$ satisfying both the equations $$\sin \theta  = \frac{1}{2},\tan \theta  = \frac{1}{{\sqrt 3 }}\;is\;\left( {n \in I} \right)$$ 
    Solution

  • Question 10
    1 / -0
    The expression $$\dfrac{{\tan A + \sec A - 1}}{{\tan A - \sec A + 1}}$$ reduces to :
    Solution
    $$\sec^2\theta=1+\tan^2\theta$$
    $$\Rightarrow \cfrac {\tan A+\sec A-1}{\tan A-\sec A+1}$$
    $$\Rightarrow \cfrac {\tan A+\sec A-(\sec^2A-\tan^2A)}{\tan A-\sec A+1}$$
    $$\Rightarrow \cfrac {(\tan A+\sec A)(1-\sec A+\tan A)}{\tan A-\sec A+1}$$
    $$\Rightarrow \tan A+\sec A$$
    $$\Rightarrow \cfrac {\sin A}{\cos A}+\cfrac {1}{\cos A}$$
    $$\Rightarrow \cfrac {1+\sin A}{\cos A}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now