Self Studies

Trigonometric Functions Test 16

Result Self Studies

Trigonometric Functions Test 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\sin { x } +\cos { x } =a,$$ then $$\left| \sin { x } -\cos { x }  \right| $$ equals
    Solution
    $$\left|\sin{x}-\cos{x}\right|=\sqrt{{\left(\sin{x}-\cos{x}\right)}^{2}}$$
                         $$=\sqrt{{\sin}^{2}{x}+{\cos}^{2}{x}-2{\sin}{x}{\cos}{x}}$$
                         $$=\sqrt{1-2\sin{x}\cos{x}}$$
    Given $$\sin{x}+\cos{x}=a$$
    squaring both sides we get
    $${\left(\sin{x}+\cos{x}\right)}^{2}={a}^{2}$$
    $$\Rightarrow {\sin}^{2}{x}+{\cos}^{2}{x}+2\sin{x}\cos{x}={a}^{2}$$
    $$\Rightarrow 1+2\sin{x}\cos{x}={a}^{2}$$
    $$\Rightarrow  2\sin{x}\cos{x}={a}^{2}-1$$
    $$\therefore \left|\sin{x}-\cos{x}\right|=\sqrt{1-\left({a}^{2}-1\right)}=\sqrt{2-{a}^{2}}$$
  • Question 2
    1 / -0
    The number of solution of the equation $$\sin 5x \cos 3x=\sin 6x \cos 2x$$ in the interval $$[0,\pi]$$ is
    Solution
    $$\sin 5x\cos 3x=\sin 6x \cos 2x$$
    $$\sin \theta\cos \phi =\cfrac{1}{2}[\sin(\theta+\phi)+\sin(\theta-\phi)]$$
    $$\cfrac{1}{2}[\sin 8x+\sin 2x]=\cfrac{1}{2}[\sin 8x+\sin 4x]$$
    $$\cfrac{1}{2}\sin 2x=\cfrac{1}{2}\sin 4x$$
    $$\sin 4x-\sin 2x=0$$
    $$2\sin 2x\cos 2x-\sin 2x=0$$
    $$\sin 2x[2\cos 2x-1]=0$$
    $$\sin 2x=0$$                $$2\cos 2x-1=0$$
    $$2x=0$$                       $$\cos 2x=\cfrac{1}{2}$$
    $$x=0$$                         $$2x=\cfrac{\pi}{3}$$
                                            $$x=\cfrac{\pi}{6}$$
    $$two$$ solutions.
  • Question 3
    1 / -0
    The value of $$\theta$$ satisfying $$\sin{7\theta}=\sin{4\theta}-\sin{\theta}$$ and $$\theta<0<\pi/2$$ are-
    Solution

  • Question 4
    1 / -0
    $$2\sin 2\beta + 4\cos (\alpha + \beta)\sin \alpha \sin \beta + \cos 2(\alpha + \beta)$$
    Solution
    $$2 \sin^{2}\beta +4 \cos (\alpha +\beta ) \sin \alpha \sin\beta +\cos 2 (\alpha +\beta )$$

    $$= 2 \sin^{2}\beta +4 (\cos \alpha \cos \beta -\sin\alpha \sin\beta ) \sin \alpha \sin\beta +\cos 2 \alpha \cos 2 \beta -\sin 2\alpha \sin 2\beta $$

    $$=2\sin^{2}\beta +4\cos\alpha \cos\beta \sin\alpha \sin\beta -1 \sin^{2}\alpha \sin^{2}\beta +\cos^{2}\alpha \cos^{2}\beta -\sin 2\alpha \sin 2\beta $$

    $$=2\sin^{2}\beta +\sin^{2}\alpha \sin^{2}\beta -4\sin^{2}\alpha \sin^{2}\beta +\cos 2\alpha \cos^{2}\alpha -\sin^{2}\alpha \sin^{2}\beta $$

    $$=(-\cos^{2}\beta )-(2 \sin^{2}\alpha )(2 \sin^{2}\beta )+\cos^{2}\alpha \cos^{2}\beta $$

    $$=(1-\cos 2\beta )-(1-\cos 2\alpha )(1-\cos 2\beta )+\cos 2\alpha \cos 2\beta $$

    $$=\cos 2\alpha $$
  • Question 5
    1 / -0
    Evaluate $$\tan \left[ {\dfrac{\pi }{4}\, + \,\dfrac{1}{2}\,{{\cos }^{ - 1}}\,\dfrac{a}{b}} \right]\, + \,\tan \left[ {\dfrac{\pi }{4}\, - \,\dfrac{1}{2}{{\cos }^{ - 1}}\,\dfrac{a}{b}} \right]\, = $$
    Solution
    $$\textbf{Given expression}$$

    $$ = \tan \left[ {\dfrac{\pi }{4}\, + \,\dfrac{1}{2}\,{{\cos }^{ - 1}}\,\dfrac{a}{b}} \right]\, + \,\tan \left[ {\dfrac{\pi }{4}\, - \,\dfrac{1}{2}{{\cos }^{ - 1}}\,\dfrac{a}{b}} \right]\, $$

    $$\textbf{Step : 1 : Do relevant substitution to simplify given equation}$$

    Let $$x=\cos ^{ -1 }{ \cfrac { a }{ b }  } \Rightarrow \cos{x} = \dfrac{a}{b}$$         $$ ........(1)$$

    $$ = \tan\left[\cfrac { \theta  }{ 4 } +\cfrac { x }{ 2 } \right]+\tan\left[\cfrac { \theta  }{ 4 } -\cfrac { x }{ 2 } \right]$$

    $$\textbf{Step : 2 Apply relevant identity }$$: 

    $$=\cfrac { \tan \cfrac {\theta  }{ 4 } +\tan\cfrac {  x }{ 2 }  }{ 1-\tan\cfrac { \theta  }{ 4 } \times   \tan \cfrac {x }{ 2 }  } +\cfrac { \tan \cfrac {\theta  }{ 4 } -\tan\cfrac {  x }{ 2 }  }{ 1+\tan\cfrac { \theta  }{ 4 } \times   \tan \cfrac {x }{ 2 }  } , $$    $$\left[\tan(A \pm B) = \dfrac{tan A \pm tan B}{1\mp tanA tanB}\right]$$


    $$=\cfrac { 1+ \tan\cfrac { x }{ 2 }  }{ 1-  \tan \cfrac { x }{ 2 }  } +\cfrac { 1- \tan\cfrac { x }{ 2 }  }{ 1+  \tan \cfrac { x }{ 2 }  }$$ 

    $$=\cfrac { { \left(1+  \tan \cfrac{x }{ 2 } \right) }^{ 2 }+{ \left(1- \tan\cfrac{ x }{ 2 } \right) }^{ 2 } }{ 1-{ \tan }^{ 2 }\cfrac { x }{ 2 }  } $$

    $$=\cfrac { 2\left(1+{ \tan }^{ 2 }\cfrac { x }{ 2 } \right) }{ \left(1- { \tan }^{ 2 }\cfrac {x }{ 2 } \right) } $$      $$[\because(a\pm b)^2  = a^2 + b^2 \pm 2ab]$$

    $$=\cfrac { 2 }{ \cos x }$$      $$[\because \cos{x} =\cfrac { \left(1-{ \tan }^{ 2 }\cfrac { x }{ 2 } \right) }{ \left(1+ { \tan }^{ 2 }\cfrac {x }{ 2 } \right) } $$ 

    Put the value  from eq.(1),

    $$ =\cfrac { 2 }{ \cfrac { a }{ b }  }$$ 

    $$ =\cfrac { 2b }{ a } $$
  • Question 6
    1 / -0
    If $$A+B+C=\pi$$ then $$\sin^3A \cos(B-C)+ \sin^3\cos(C-A) + \sin^3C \cos (A-B) $$ is equal to
    Solution

  • Question 7
    1 / -0
    If $$(\cos\theta +\cos 2\theta)^3=\cos^3\theta +\cos^32\theta$$, then the least positive value of $$\theta$$ is equal to?
    Solution
    We are given 
    $$(\cos\theta+\cos2\theta)^{3}=\cos^{3}\theta+\cos^{3}2\theta$$
    $$\cos^{3}\theta+\cos^{3}2\theta+3\cos^{2}\theta\cos^{2}\theta+3\cos\theta\cos^{2}2\theta$$
    $$=\cos^{3}\theta+\cos^{3}2\theta$$
    $$(as\ (a+b)^{3}=a^{3}+b^{3}+3a^{2}b+3b^{2}a)$$
    So, $$3\cos^{2}\theta\cos 2\theta+3\cos\theta\cos^{2}\theta=0$$
    $$3\cos\theta\cos2\theta(\cos\theta+\cos2\theta)=0$$
    So, $$\cos\theta.\cos 2\theta.(\cos\theta+2\cos^{2}\theta-1)=0$$
    $$\cos\theta.\cos 2\theta.(2\cos^{2}\theta+\cos\theta-1)=0$$
    We get $$\cos\theta=0, \cos 2\theta=0$$ & $$2\cos^{2}\theta+\cos\theta-1=0$$
    $$\cos\theta=0$$ or $$\cos 2\theta=0$$ or $$2\cos^{2}\theta+\cos\theta-1=0$$
    $$\theta=\cos^{-1}0$$ or $$2\theta=\cos^{-1}0$$ or 
    $$2\cos^{2}\theta+2\cos\theta-\cos\theta-1=0$$
    $$2\cos\theta(\cos\theta+1)-1(\cos\theta+1)=0$$
    $$(2\cos\theta-1)(\cos\theta+1)=0$$
    $$2\cos\theta-1=0$$ or $$\cos\theta+1=0$$
    $$\cos\theta=\dfrac{1}{2}$$ or $$\cos\theta+1=0$$
    $$\cos\theta=\dfrac{1}{2}$$ or $$\cos\theta=-1$$
    $$\theta=\cos^{-1}\dfrac{1}{2}$$        $$\theta=\cos^{-1}(-1)$$
    By principal values we get $$\theta$$ as
    $$\dfrac{\pi}{2}, \dfrac{\pi}{4}, \dfrac{\pi}{3}, \pi$$
    $$\Rightarrow$$ then least positive value of $$\theta$$ is equal to $$\left(\dfrac{\pi}{4}\right)$$
  • Question 8
    1 / -0
    General solution of equation $$\cot \theta  + \text{cosec}\theta  = \sqrt 3 $$ is
    Solution
    Given expression:
    $$\cot\theta+\text{cosec}\ \theta=\sqrt3$$
    $$\dfrac{\cos \theta}{\sin \ \theta}+\dfrac{1}{\sin \ \theta}=\sqrt3$$

    Taking square both side,
    $$\cos ^2\theta+1+2\cos \theta=3-3\cos ^2\theta$$                      [\sin ce $$\sin ^2\theta =1-\cos ^2\theta$$]
    $$4\cos ^2\theta+2\cos \theta-2=0$$
    $$4\cos ^2\theta+4\cos \theta-2\cos \theta-2=0$$
    We get
    $$(\cos \theta+1)(4\cos \theta -2)=0$$
    When,
    $$(\cos \theta+1)=0$$
    $$\cos \theta =-1$$
    $$\cos \pi=\cos  (2n+1)\pi=-1$$
    Hence $$\theta =(2n+1)\pi.$$

    When,
    $$(4\cos \theta-2)=0$$
    $$\cos \theta =\dfrac{1}{2}$$
    $$\cos \dfrac{\pi}{3}=\cos  (2n\pi\pm \dfrac{\pi}{3})=\dfrac{1}{2}$$

    Hence, $$\theta=(2n\pi\pm \dfrac{\pi}{3})$$
  • Question 9
    1 / -0
    If $$sin 2 \theta = cos 3 \theta \, and \, \theta $$ is acute then $$sin 5 \theta$$  = ...
    Solution

  • Question 10
    1 / -0
    The general solution of the equation $${\sin ^{50}}x - {\cos ^{50}}x = 1$$
    Solution

    Consider the given equation.

    $${{\sin }^{50}}x-{{\cos }^{50}}x=1$$

    $${{\sin }^{50}}x=1+{{\cos }^{50}}x$$                 …….. (1)

     

    Here, $${{\cos }^{50}}x$$ is always positive. So, the maximum value of $${{\sin }^{50}}x$$ is $$1$$.

     

    So,

    $${{\cos }^{50}}x$$ must be zero.

     

    Hence, $${{\cos }^{50}}x=0$$

    $$x=\left( 2n+1 \right)\dfrac{\pi }{2},$$ where $$n\in I$$

    $$x=n\pi +\dfrac{\pi}{2}$$

     

    Hence, this is the answer.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now