We are given
$$(\cos\theta+\cos2\theta)^{3}=\cos^{3}\theta+\cos^{3}2\theta$$
$$\cos^{3}\theta+\cos^{3}2\theta+3\cos^{2}\theta\cos^{2}\theta+3\cos\theta\cos^{2}2\theta$$
$$=\cos^{3}\theta+\cos^{3}2\theta$$
$$(as\ (a+b)^{3}=a^{3}+b^{3}+3a^{2}b+3b^{2}a)$$
So, $$3\cos^{2}\theta\cos 2\theta+3\cos\theta\cos^{2}\theta=0$$
$$3\cos\theta\cos2\theta(\cos\theta+\cos2\theta)=0$$
So, $$\cos\theta.\cos 2\theta.(\cos\theta+2\cos^{2}\theta-1)=0$$
$$\cos\theta.\cos 2\theta.(2\cos^{2}\theta+\cos\theta-1)=0$$
We get $$\cos\theta=0, \cos 2\theta=0$$ & $$2\cos^{2}\theta+\cos\theta-1=0$$
$$\cos\theta=0$$ or $$\cos 2\theta=0$$ or $$2\cos^{2}\theta+\cos\theta-1=0$$
$$\theta=\cos^{-1}0$$ or $$2\theta=\cos^{-1}0$$ or
$$2\cos^{2}\theta+2\cos\theta-\cos\theta-1=0$$
$$2\cos\theta(\cos\theta+1)-1(\cos\theta+1)=0$$
$$(2\cos\theta-1)(\cos\theta+1)=0$$
$$2\cos\theta-1=0$$ or $$\cos\theta+1=0$$
$$\cos\theta=\dfrac{1}{2}$$ or $$\cos\theta+1=0$$
$$\cos\theta=\dfrac{1}{2}$$ or $$\cos\theta=-1$$
$$\theta=\cos^{-1}\dfrac{1}{2}$$ $$\theta=\cos^{-1}(-1)$$
By principal values we get $$\theta$$ as
$$\dfrac{\pi}{2}, \dfrac{\pi}{4}, \dfrac{\pi}{3}, \pi$$
$$\Rightarrow$$ then least positive value of $$\theta$$ is equal to $$\left(\dfrac{\pi}{4}\right)$$