Self Studies

Trigonometric F...

TIME LEFT -
  • Question 1
    1 / -0

    The trigonometric equation is-
    $$\sin x+3 \sin 2x+\sin 3x=\cos x+3 \cos 2x+\cos 3x$$
    when $$x$$ lies in first four quadrants. It means $$x\epsilon [0, 2\pi]$$, then-

    How many solutions are there-

  • Question 2
    1 / -0

    If $$\sec$$ $$\beta=\alpha+\dfrac{1}{4a}$$,then the value of $$\sec\beta+\tan\beta$$ is

  • Question 3
    1 / -0

    $$|\tan\theta+\sec\theta|=|\tan\theta|+|\sec\theta|, 0\leq \theta \leq 2\pi$$  is possible only if-

  • Question 4
    1 / -0

    Directions For Questions

    The trigonometric equation is-
    $$\sin x+3 \sin 2x+\sin 3x=\cos x+3 \cos 2x+\cos 3x$$
    when $$x$$ lies in first four quadrants. It means $$x\epsilon [0, 2\pi]$$, then-

    ...view full instructions

    The sum of the solution of $$x$$ is-

  • Question 5
    1 / -0

    Consider the system of equations $$\displaystyle \sin x \cos 2y= (a^{2}-1)^{2}+1,\ \cos x\sin 2y= a+1$$, then the number of values of $$\displaystyle y\in [0,2\pi]$$ when the system has solution for permissible values of $$a$$ are,

  • Question 6
    1 / -0

    The value of $$\displaystyle \sin ^{2}1^{\circ}+\sin ^{2}2^{\circ}+\sin ^{2}2^{\circ}+...+\sin ^{2}89^{\circ}+\sin ^{2}90^{\circ}$$

  • Question 7
    1 / -0

    Consider the system of equations $$\displaystyle \sin x. \cos 2y= (a^{2}-1)^{2}+1,\ \cos x.\sin 2y= a+1$$, then the number of values of $$\displaystyle x\epsilon [0,2\pi]$$ when the system has a solution for permissible values of a is/are,

  • Question 8
    1 / -0

    The total number of solutions of $$\displaystyle \sin \left \{ x \right \}=\cos \left \{ x \right \}$$ (where $$\displaystyle  \left \{ . \right \}$$ denotes the fractional part) in $$\displaystyle  \left [ 0,2\pi  \right ]$$ is equal to

  • Question 9
    1 / -0

    In the given figure, $$\displaystyle \angle B =90^{\circ}$$ and $$\displaystyle \angle ADB=x^{\circ}$$, then find $$\displaystyle \cos^{2} C^{\circ}+\sin^{2} C^{\circ} $$.

  • Question 10
    1 / -0

    The number of real solutions of $$\sin e^{x}.\cos e^{x}=2^{x-2}+2^{-x-2}$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now