$$sin^2x+cos^2x=1$$
$$sin^4x+cos^4x+2sin^2xcos^2x=1$$
$$sin^4x+cos^4x=1-2sin^2xcos^2x$$ ...[1]
$$sin^2x+cos^2x=1$$
$$sin^6x+cos^6x+3sin^2xcos^2x(sin^2x+cos^2x)=1$$
$$sin^6x+cos^6x=1-3sin^2xcos^2x$$ ...[2]
$$|\sqrt{2sin^4x+18cos^2x}-\sqrt{2cos^4x+18sin^2x}|=1$$
Squaring above equation
$$\therefore 2sin^4x+18cos^2x+2cos^4x+18sin^2x-2(\sqrt{2sin^4x+18cos^2x})(\sqrt{2cos^4x+18sin^2x})=1$$
$$\therefore 2(sin^4x+cos^4x)+18(cos^2x+sin^2x)-1=2(\sqrt{2sin^4x+18cos^2x})(\sqrt{2cos^4x+18sin^2x})$$
$$\therefore 2(1-2sin^2xcos^2x)+18-1=2(\sqrt{2sin^4x+18cos^2x})(\sqrt{2cos^4x+18sin^2x})$$ ..( [Using[1] )
$$\therefore 19-4sin^2xcos^2x=2(\sqrt{2sin^4x+18cos^2x})(\sqrt{2cos^4x+18sin^2x})$$
Squaring above equation
$$\therefore 361+16sin^4xcos^4x-152sin^2xcos^2x=4(4sin^4xcos^4x+36cos^6x+36sin^6x+324sin^2xcos^2x)$$
$$\therefore 361+16sin^4xcos^4x-152sin^2xcos^2x=16sin^4xcos^4x+144cos^6x+144sin^6x+1296sin^2xcos^2x$$
$$\therefore 361=144(cos^6x+sin^6x)+1448sin^2xcos^2x$$
$$\therefore 361=144(1-3sin^2xcos^2x)+1448sin^2xcos^2x$$ ....( Using [2] )
$$\therefore 217=1016sin^2xcos^2x$$
$$\therefore 217=254sin^22x$$
$$\therefore sin2x=\pm \sqrt{\dfrac{217}{254}}$$
Let $$sin^{-1} \sqrt{\dfrac{217}{254}}=\theta$$
$$ sin2x=\pm \sqrt{\dfrac{217}{254}}$$
$$\therefore 2x=sin^{-1} \sqrt{\dfrac{217}{254}}$$
$$\therefore 2x=\theta,\pi-\theta,2\pi+\theta,3\pi-theta$$
$$\therefore x=\dfrac{\theta}{2},\dfrac{\pi-\theta}{2},\dfrac{2\pi+\theta}{2},\dfrac{3\pi-\theta}{2}$$
$$ 2x=sin^{-1} (-\sqrt{\dfrac{217}{254}})$$
$$\therefore 2x=\pi+\theta,2\pi-\theta,3\pi+\theta,4\pi-\theta$$
$$\therefore x=\dfrac{\pi+\theta}{2},\dfrac{2\pi-\theta}{2},\dfrac{3\pi+\theta}{2},\dfrac{4\pi-\theta}{2}$$
So, total number of solutions =8
So, the answer is option (D)