Self Studies

Trigonometric Functions Test 29

Result Self Studies

Trigonometric Functions Test 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of solutions of $$\displaystyle \sum_{r=1}^{5} \cos r x=5 $$ in the interval of $$\displaystyle \left [ 0,2\pi  \right ]$$ is
    Solution

    $$ \cos x + \cos 2x + \cos 3x + \cos 4x + \cos 5x = 5$$
    we know,  $$ \cos x, \cos 2x, \cos 3x, \cos 4x, \cos 5x \leq 1 $$ 
    considering both,
    $$ \cos x, \cos 2x, \cos 3x, \cos 4x, \cos 5x = 1$$
    hence general solutions in the given interval are,
    $$ \cos x = 1 \Rightarrow x = 0, 2\pi$$ 
    $$ \cos 2x = 1 \Rightarrow 2x = 0, 2\pi, 4\pi \Rightarrow x = 0, \pi, 2\pi $$
    $$ \cos 3x = 1 \Rightarrow 3x = 0, 2\pi, 4\pi, 6\pi \Rightarrow x = 0, \dfrac{2\pi}{3}, 2\pi $$
    $$ \cos 4x = 1 \Rightarrow 4x = 0, 2\pi, 4\pi, 6\pi, 8\pi \Rightarrow x = 0, \dfrac{\pi}{2},\pi, \dfrac{3\pi}{2}, 2\pi $$
    $$ \cos 5x = 1 \Rightarrow 5x = 0, 2\pi, 4\pi, 6\pi, 8\pi, 10\pi \Rightarrow x = 0, \dfrac{2\pi}{5}, \dfrac{4\pi}{5}, \dfrac{6\pi}{5}, \dfrac{8\pi}{5}, 2\pi $$
    thus common solutions are,
    $$ x = 0, 2\pi$$
    Hence, option 'B' is correct.

  • Question 2
    1 / -0
    If $$3x = \text{cosec } \theta$$ and $$\dfrac {3}{x} = \cot \theta$$, then $$\left (x^{2} - \dfrac {1}{x^{2}}\right ) =$$
    Solution
    Since $$cosec^{2} \theta - \cot^{2}\theta = 1$$
    $$\therefore (3x)^{2} - \left (\dfrac {3}{x}\right )^{2} = 1 $$, substitute the given values 
    $$\Rightarrow 9x^{2} - \dfrac {9}{x^{2}} = 1\Rightarrow 9 \left (x^{2} - \dfrac {1}{x^{2}}\right ) = 1$$
    $$\Rightarrow x^{2} - \dfrac {1}{x^{2}} = \dfrac {1}{9}$$.
  • Question 3
    1 / -0
    If $$\displaystyle \sin x+\mathrm{cosec}\: x=2, $$ then $$\displaystyle \sin ^{n} x + \mathrm{cosec} ^{n} \: x$$ is equal to 
    Solution
    We have $$ sin x + cosec x = 2 $$
    $$ => sin x + \dfrac {1}{sin x } = 2 $$

    This means $$ x = 90^0 $$ as  maximum value of $$ sin x = 1 $$  such that $$ 1 + 1 = 2 $$

    Now, for any $$ n $$, we have $$ sin^n 90^0 + cosec ^n 90^0 = 1^2 + 1^2 = 2 $$
  • Question 4
    1 / -0
    The value of $$\displaystyle \frac { \sin { \theta  } \cos { \theta  } .\sin { \left( { 90 }^{ o }-\theta  \right)  }  }{ \cos { \left( { 90 }^{ o }-\theta  \right)  }  } +\frac { \cos { \theta  } .\sin { \theta  } .\cos { \left( { 90 }^{ o }-\theta  \right)  }  }{ \sin { \left( { 90 }^{ o }-\theta  \right)  }  } +\frac { { \sin }^{ 2 }{ 27 }^{ o }+{ \sin }^{ 2 }{ 63 }^{ o } }{ { \cos }^{ 2 }{ 40 }^{ o }+{ \cos }^{ 2 }{ 50 }^{ o } } $$ is :
    Solution
    $$\displaystyle \sin { \left( { 90 }^{ o }-\theta  \right)  } =\cos { \theta  } ;\cos { \left( { 90 }^{ o }-\theta  \right)  } =\sin { \theta  } $$
    $$\displaystyle \sin { { 27 }^{ o } } =\sin { \left( { 90 }^{ o }-{ 63 }^{ o } \right)  } ={ \cos63 }^{ o }$$
    $$\displaystyle { \cos40 }^{ o }=\cos { \left( { 90 }^{ o }-{ 50 }^{ o } \right)  } =\sin { { 50 }^{ o } } $$
    $$\displaystyle \therefore \quad Given\quad exp.$$
    $$\displaystyle =\frac { \sin { \theta  } .\cos { \theta  } .\cos { \theta  }  }{ \sin { \theta  }  } +\frac { \cos { \theta  } .\sin { \theta  } \sin { \theta  }  }{ \cos { \theta  }  } +\frac { \left( { \cos }^{ 2 }{ 63 }^{ o }+{ \sin }^{ 2 }{ 63 }^{ o } \right)  }{ \left( { \sin }^{ 2 }{ 50 }^{ o }+{ \cos }^{ 2 }{ 50 }^{ o } \right)  } $$
    $$\displaystyle ={ \cos }^{ 2 }\theta +{ \sin }^{ 2 }\theta +\frac { 1 }{ 1 } =1+1=2$$
  • Question 5
    1 / -0
    If $$\displaystyle p=\sqrt{\frac{1-\sin x}{1+\sin x}},q=\frac{1-\sin x}{\cos x},r=\frac{\cos x}{1+\sin x}$$ 
    Which one of the following statement is correct ?
    Solution
    Consider, $$\displaystyle p=\sqrt{\frac{1-\sin x}{1+\sin x}}$$

    $$=\displaystyle \sqrt{\frac{1-\sin x}{1+\sin x}\times\frac{1-\sin x}{1+\sin x}}$$


    $$=\displaystyle \sqrt{\frac{(1-\sin x)^2}{1-\sin^2 x}}$$

    $$=\displaystyle \sqrt{\frac{(1-\sin x)^2}{\cos^2 x}}$$

    $$q=\displaystyle \frac{1-\sin x}{\cos x}$$

    Again consider, $$ r=\displaystyle \frac{\cos x}{1+\sin x}=\displaystyle \frac{\cos x}{1+\sin x} \times \frac{1-\sin x}{1-\sin x}$$

    $$=\displaystyle \frac{\cos x(1-\sin x)}{1-\sin^2 x} $$

    $$=\displaystyle \frac{\cos x(1-sinx)}{]cos^2 x} $$

    $$=\displaystyle \frac{1-\sin x}{\cos x} $$

    $$\text{Clearly, p=q=r}$$

    Option D is correct.
  • Question 6
    1 / -0
    The value of $$\alpha \varepsilon (- \pi, 0)$$ satisfying $$sin \alpha + \int_{\alpha}^{2 \alpha} . cos 2x dx = 0$$ is
    Solution
    Consider,
    $$sin\alpha + \int^{2\alpha}_\alpha cos2x\ dx = sin\alpha +\left [\dfrac{sin2\alpha}{2} \right]_{\alpha}^{2\alpha}$$
    $$\Rightarrow sin \alpha+\dfrac{1}{2}[sin 4\alpha-sin 2\alpha]\\= sin 2\alpha(2cos 2\alpha-1)+sin\alpha\\= (4cos^3\alpha-3cos\alpha +1)sin\alpha $$ 

    And it is given that  $$(\alpha \ne 0)$$

    $$cos \alpha=1/2 $$ is satisfying the above equation

    $$\alpha =\dfrac{-\pi}{3}$$
  • Question 7
    1 / -0
    $$\dfrac12\sin{(2x)}(1+\cot ^{ 2 }{ (x) } )$$ is equal to
    Solution
    The given identity can be solved as:
    $$\left( \dfrac { 1 }{ 2 }  \right) (\sin { 2x) } (1+\cot ^{ 2 }{ x } )$$

    $$=\left( \dfrac { 1 }{ 2 }  \right) (2\sin { x } \cos { x } )(cosec ^{ 2 }{ x } )$$ ....  (because $$\sin { 2x } =2\sin { x } \cos { x }$$ and $$1+\cot ^{ 2 }{ x } =cosec ^{ 2 }{ x }$$)

    $$=(\sin { x } \cos { x } )\left( \dfrac { 1 }{ \sin ^{ 2 }{ x }  }  \right)$$ ......    (because $$cosec ^{ 2 }{ x } =\dfrac { 1 }{ \sin ^{ 2 }{ x }  }$$)

    $$=\dfrac { \cos { x }  }{ \sin { x }  }$$

    $$=\cot { x }$$

    Hence, $$\left( \dfrac { 1 }{ 2 }  \right) (\sin { 2x) } (1+\cot ^{ 2 }{ x } )=\cot { x }$$. 
  • Question 8
    1 / -0
    The number of $$x\epsilon [0, 2\pi]$$ for which $$|\sqrt {2\sin^{4} x + 18\cos^{2}x} - \sqrt {2\cos^{4} x + 18\sin^{2} x}| = 1$$ is:
    Solution
    $$sin^2x+cos^2x=1$$
    $$sin^4x+cos^4x+2sin^2xcos^2x=1$$
    $$sin^4x+cos^4x=1-2sin^2xcos^2x$$   ...[1]

    $$sin^2x+cos^2x=1$$
    $$sin^6x+cos^6x+3sin^2xcos^2x(sin^2x+cos^2x)=1$$
    $$sin^6x+cos^6x=1-3sin^2xcos^2x$$     ...[2]

    $$|\sqrt{2sin^4x+18cos^2x}-\sqrt{2cos^4x+18sin^2x}|=1$$

    Squaring above equation
    $$\therefore 2sin^4x+18cos^2x+2cos^4x+18sin^2x-2(\sqrt{2sin^4x+18cos^2x})(\sqrt{2cos^4x+18sin^2x})=1$$

    $$\therefore 2(sin^4x+cos^4x)+18(cos^2x+sin^2x)-1=2(\sqrt{2sin^4x+18cos^2x})(\sqrt{2cos^4x+18sin^2x})$$

    $$\therefore 2(1-2sin^2xcos^2x)+18-1=2(\sqrt{2sin^4x+18cos^2x})(\sqrt{2cos^4x+18sin^2x})$$       ..( [Using[1] )

    $$\therefore 19-4sin^2xcos^2x=2(\sqrt{2sin^4x+18cos^2x})(\sqrt{2cos^4x+18sin^2x})$$

    Squaring above equation
    $$\therefore 361+16sin^4xcos^4x-152sin^2xcos^2x=4(4sin^4xcos^4x+36cos^6x+36sin^6x+324sin^2xcos^2x)$$

    $$\therefore 361+16sin^4xcos^4x-152sin^2xcos^2x=16sin^4xcos^4x+144cos^6x+144sin^6x+1296sin^2xcos^2x$$

    $$\therefore 361=144(cos^6x+sin^6x)+1448sin^2xcos^2x$$

    $$\therefore 361=144(1-3sin^2xcos^2x)+1448sin^2xcos^2x$$    ....( Using [2] )

    $$\therefore 217=1016sin^2xcos^2x$$

    $$\therefore 217=254sin^22x$$

    $$\therefore sin2x=\pm \sqrt{\dfrac{217}{254}}$$

    Let $$sin^{-1} \sqrt{\dfrac{217}{254}}=\theta$$


    $$ sin2x=\pm \sqrt{\dfrac{217}{254}}$$

    $$\therefore 2x=sin^{-1} \sqrt{\dfrac{217}{254}}$$ 

    $$\therefore  2x=\theta,\pi-\theta,2\pi+\theta,3\pi-theta$$

    $$\therefore x=\dfrac{\theta}{2},\dfrac{\pi-\theta}{2},\dfrac{2\pi+\theta}{2},\dfrac{3\pi-\theta}{2}$$

    $$ 2x=sin^{-1} (-\sqrt{\dfrac{217}{254}})$$

    $$\therefore 2x=\pi+\theta,2\pi-\theta,3\pi+\theta,4\pi-\theta$$

    $$\therefore x=\dfrac{\pi+\theta}{2},\dfrac{2\pi-\theta}{2},\dfrac{3\pi+\theta}{2},\dfrac{4\pi-\theta}{2}$$

    So, total number of solutions =8
    So, the answer is option (D)

  • Question 9
    1 / -0
    The range of $$f(x)=\cfrac { 1 }{ |\sin\ x| } +\cfrac { 1 }{ |\cos\ x| } $$ is
    Solution
    Given, $$f(x)=\cfrac{1}{\mid \sin x \mid}$$ + $$\cfrac{1}{\mid \cos x \mid}$$
    If either of $$\sin x$$ or $$\cos x=0$$
    Then $$f(x)=\infty$$
    $$\therefore$$ maximum of $$f(x)=\infty$$
    $$f(x)$$ will be minimum if $$\sin x=\cos x \Rightarrow x=\cfrac{\pi}{4}$$
    $$\therefore \mid \sin x \mid=\mid \cos x \mid=\cfrac{!}{\sqrt 2}$$
    $$\therefore$$ minimum of $$f(x)=\sqrt 2+\sqrt 2=s\sqrt 2$$
    $$\therefore$$ Range of $$f(x)=[2\sqrt 2,\infty)$$
  • Question 10
    1 / -0
    $$\cos (2001) \pi + \cot (2001)\dfrac {\pi}{2} + \sec (2001) \dfrac {\pi}{3} + \tan (2001) \dfrac {\pi}{4} + cosec (2001) \dfrac {\pi}{6}$$ equal to
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now