Self Studies

Trigonometric Functions Test -3

Result Self Studies

Trigonometric Functions Test -3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

     $$\displaystyle \frac{\sin(\theta+A)}{\sin(\theta+B)}=\sqrt{\frac{\sin 2A}{\sin 2B}}$$ then $$\tan^{2}\theta=$$ 

    Solution
    $$\cfrac { sin\left( \theta +A \right)  }{ sin\left( \theta +B \right)  } =\sqrt { \cfrac { sin2A }{ sin2B }  } $$
    Squaring both sides, we get
    $$\cfrac { { sin }^{ 2 }\left( \theta +A \right)  }{ { sin }^{ 2 }\left( \theta +B \right)  } =\cfrac { sin2A }{ sin2B } \\ \Rightarrow \cfrac { { sin }^{ 2 }\theta { cos }^{ 2 }A+{ cos }^{ 2 }\theta { sin }^{ 2 }A }{ { sin }^{ 2 }\theta { cos }^{ 2 }B+{ cos }^{ 2 }\theta { sin }^{ 2 }B } =\cfrac { 2sin^2Acos^2A }{ 2sin^2Bcos^2B } \\ \Rightarrow { sin }^{ 2 }\theta { cos }^{ 2 }AsinBcosB+{ cos }^{ 2 }\theta { sin }^{ 2 }AsinBcosB={ sin }^{ 2 }\theta { cos }^{ 2 }BsinAcosA+{ cos }^{ 2 }\theta { sin }^{ 2 }BsinAcosA\\ \Rightarrow { sin }^{ 2 }\theta { cos }^{ 2 }AsinBcosB-{ sin }^{ 2 }\theta { cos }^{ 2 }BsinAcosA={ cos }^{ 2 }\theta { sin }^{ 2 }BsinAcosA-{ cos }^{ 2 }\theta { sin }^{ 2 }AsinBcosB\\ \Rightarrow { sin }^{ 2 }\theta cosAcosB\left( cosAsinB-sinAcosB \right) ={ cos }^{ 2 }\theta sinAsinB\left( cosAsinB-sinAcosB \right) \\ \Rightarrow \cfrac { { sin }^{ 2 }\theta  }{ { cos }^{ 2 }\theta  } =\cfrac { sinAsinB }{ cosAcosB } \quad \Rightarrow { tan }^{ 2 }\theta =tanAtanB$$
  • Question 2
    1 / -0
    lf $$\alpha$$ and $$\beta$$ are two different solutions lying between $$\displaystyle \frac{-\pi}{2}$$ and $$\displaystyle \frac{\pi}{2}$$ of the equation $$2t\mathrm{a}n\theta+\mathrm{S}\mathrm{e}\mathrm{c}\theta=2$$ then $$ t\mathrm{a}n\alpha+t\mathrm{a}n\beta$$ 
    Solution
    The given equation is $$2\tan{\theta}+\sec{\theta}=2$$
    $$\Rightarrow \sec{\theta}=2-2\tan{\theta}$$
    Squaring on both sides, we get
    $${\sec}^{2}{\theta}=4{\left(1-\tan{\theta}\right)}^{2}$$
    $${\sec}^{2}{\theta}=4\left(1+{\tan}^{2}{\theta}-2\tan{\theta}\right)$$
    $$1+{\tan}^{2}{\theta}=4\left(1+{\tan}^{2}{\theta}\right)-8\tan{\theta}$$
    $$3{\tan}^{2}{\theta}-8\tan{\theta}+3=0$$
    Since $$\alpha$$ and $$\beta$$ are the roots of the equation, 
    $$\therefore \tan{\alpha}+\tan{\beta}=\dfrac{8}{3}$$
  • Question 3
    1 / -0
    If $$\displaystyle \frac{\cos(A+B)}{\cos(A-B)}+\frac{\cos(C-D)}{\cos(C+D)}=0$$, then $$\cot A\ cot B\cot C\, cot D$$ is equal to 
    Solution

    Given $$\displaystyle \dfrac{\cos (A+B)}{\cos (A-B)}+\dfrac{\cos (C-D)}{\cos (C+D)}=0 $$


    $$\Rightarrow \dfrac{1-\tan A \tan B}{1+\tan A \tan B}+\dfrac{1+\tan C \tan D}{1-\tan C \tan D}=0$$

     $$[\cos (A+B)=\cos A \cos B-\sin A \sin B , \cos (A-B)=\cos A \cos B+\sin A \sin B]$$


    $$\displaystyle =\dfrac{1-\tan A \tan B-\tan C \tan D+\tan A \tan B \tan C \tan D +1+\tan A \tan B+\tan C \tan D +\tan A \tan B \tan C \tan D}{(1+\tan A \tan B)(1-\tan C \tan D)}$$


    $$\displaystyle \Rightarrow \dfrac{2(1+\tan A \tan B \tan C \tan D)}{(1+\tan A \tan B)(1-\tan C \tan D)}=0$$


    $$ \Rightarrow\tan A \tan B \tan C \tan D=-1$$


    $$\Rightarrow \cot A \cot B \cot C \cot D =-1$$

  • Question 4
    1 / -0
    If $$y\displaystyle \tan\left (\theta-\dfrac {\pi}{6}\right ) = x\tan \left (\theta + \dfrac {2\pi}{3}\right ) $$ , then $$\dfrac {y+x}{y-x}=$$
    Solution
    $$\dfrac{y}{x}=\dfrac{tan(\theta+\dfrac{2\pi}{3})}{tan(\theta-\dfrac{\pi}{6})}$$

    $$\dfrac{y+x}{y-x}=\dfrac{tan(\theta+\dfrac{2\pi}{3})+tan(\theta-\dfrac{\pi}{6})}{tan(\theta+\dfrac{2\pi}{3}) -tan(\theta-\dfrac{\pi}{6})}$$

    $$=\dfrac{sin(\theta+\dfrac{2\pi}{3}+\theta-\dfrac{\pi}{6})}{sin(\theta+\dfrac{2\pi}{3}-\theta+\dfrac{\pi}{6})}$$

    $$=\dfrac{sin(2\theta+\dfrac{\pi}{2})}{sin(\dfrac{5\pi}{6})}$$

    $$=\dfrac{cos2\theta}{sin(\pi-\dfrac{\pi}{6})}$$

    $$=cosec(\dfrac{\pi}{6}).cos2\theta$$

    $$=2cos2\theta$$.
  • Question 5
    1 / -0
    $$\cos\alpha\sin(\beta-\gamma)+\cos\beta\sin(\gamma-\alpha)+\cos\gamma\sin(\alpha-\beta)= $$
    Solution
    $$cos \alpha sin (\beta -\gamma )+cos \beta (sin (\gamma -\alpha ))+cos \gamma sin (\alpha -\beta )$$

    $$=cos \alpha (sin \beta cos \gamma -sin \gamma cos \beta ) +cos \beta (sin \gamma cos \alpha -sin \alpha cos \gamma )+cos \gamma (sin \alpha cos \beta -sin \beta cos \alpha )$$

    $$=0 [\because sin (a-b)=sin a cos b-sin b cos a]$$
  • Question 6
    1 / -0
    $$\displaystyle \sum \cos \alpha \sin (\beta - \gamma) =$$
    Solution
    $$\displaystyle \sum \cos \alpha \sin (\beta -\gamma) =\cos \alpha \sin (\beta -\gamma)+\cos \beta \sin (\gamma -\alpha)+\cos \gamma \sin (\alpha -\beta)$$
    $$=\cos \alpha \sin \beta \cos \gamma -\cos \alpha \cos \beta \sin \gamma +\cos \beta \sin \gamma \cos \alpha - \cos \beta \cos \gamma \sin \alpha +\cos \gamma \sin \alpha \cos \beta -\cos \gamma \cos \beta \sin \alpha$$
    $$=0$$
  • Question 7
    1 / -0

     $$\sin A+\sin B=\sqrt{3}(\cos B-\cos A)$$. Find the value of $$\sin 3A+\sin 3B$$
    Solution
    $$\sin A+\sin B=\sqrt{3}(\cos B-\cos A)$$

    $$\dfrac { 1 }{ 2 } \sin  A+\dfrac { 1 }{ 2 } \sin  B=\dfrac { \sqrt { 3 }  }{ 2 } \cos  B-\dfrac { \sqrt { 3 }  }{ 2 } \cos  A$$

    $$\dfrac { 1 }{ 2 } \sin  A+\dfrac { \sqrt { 3 }  }{ 2 } \cos  A=\dfrac { \sqrt { 3 }  }{ 2 } \cos  B-\dfrac { 1 }{ 2 } \sin  B$$

    $$\sin  (A+{ 60 }^{ 0 })=\cos  (B+{ 30 }^{ 0 })$$

    $$\sin  (A+{ 60 }^{ 0 })=\sin  ({ 60 }^{ 0 }-B)$$

    $$\Rightarrow A+{ 60 }^{ 0 }={ 60 }^{ 0 }-B$$

    So, 
    $$\sin  3A+\sin  3B=sin(-3B)+\sin  3B=0$$

  • Question 8
    1 / -0
     If $$\displaystyle \tan A=\cfrac{x\sin B}{1-x\cos B}$$
    and $$\displaystyle \tan B=\cfrac{y\sin A}{1-y\cos A}$$, then $$\displaystyle \cfrac{\sin A}{\sin B}=$$
    Solution

    $$\displaystyle \tan A =\cfrac{\sin A }{cos A}=\cfrac{x \sin B}{1-x cos B}$$
    $$\sin A -x \sin A cos B=x \sin B cos A$$
    $$\displaystyle x=\cfrac{\sin A }{\sin (A+B)}$$
    Similarly , $$\displaystyle y=\cfrac{\sin B}{\sin (A+B)}$$
    $$\displaystyle \therefore \cfrac{\sin A }{\sin B}=\cfrac{x}{y}$$

  • Question 9
    1 / -0
    If $$\displaystyle \sin x\cos y=\frac{1}{4},3\tan x=4\tan y$$, then $$ \sin(x-y)=$$
    Solution

    Given $$\sin x \cos y=\cfrac{1}{4}$$ .......1

    $$3\tan x=4\tan y$$
    $$3 \sin x \cos y=4 \sin y \cos x$$
    from 1 

    $$3\times \cfrac{1}{4}=4 \sin y \cos x$$
    $$\sin y \cos x=\cfrac{3}{16}$$ ............2
    $$\therefore \sin (x-y)=\sin x \cos y-\sin y \cos x$$
    $$\displaystyle =\cfrac{1}{4}-\cfrac{3}{16}=\cfrac{1}{16}$$

  • Question 10
    1 / -0
    For all values of $$\theta,\cos\theta.\text{cosec }\theta\sqrt{\sec^2\theta-1}$$ is
    Solution
    $$ { \cos }\theta\text{cosec }\theta \sqrt { { \sec }^{ 2 }\theta -1 }$$
    $$={ \cos }\theta .\dfrac { 1 }{ \sin\theta  } .\sqrt { { \tan }^{ 2 }\theta  }$$

    $$=\cot\theta .\tan\theta \\ =1 $$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now