Self Studies

Trigonometric Functions Test 30

Result Self Studies

Trigonometric Functions Test 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The least value of a for which the expression $$f(x)=\cfrac{4}{\sin x}+\cfrac{1}{1-\sin x}=a^{2}$$ has at least one solution on the interval $$(0,\quad \pi /2)$$ is 
    Solution
    Let $$f(x)=\cfrac{4}{\sin x}+\cfrac{1}{1-\sin x}=a^{2}$$
    $$f^{'}(x)=[\cfrac{-4}{\sin^{2}x}+\cfrac{1}{(1-\sin x)^{2}}]\cos x$$
    $$f(x)$$ is not monotonically increasing or decreasing function.
    $$\therefore a^{2}$$ will be minimum , for $$x$$ at which $$f^{'}(x)=0$$
    $$\therefore \cfrac{-4}{\sin^{2}x}+\cfrac{1}{(1-\sin x)^{2}}=0$$    ($$\cos x \ne 0)$$, $$(x \in(0,\cfrac{\pi}{2}))$$
    $$\therefore 4(1-\sin x)^{2}=\sin^{2}x$$
    $$2-2\sin x=\sin x$$
    $$\therefore \sin x=\cfrac{2}{3}$$
    $$\therefore$$ least value of $$a^{2}$$=4$$(\cfrac{3}{2})+\cfrac{1}{1-\cfrac{2}{3}}=6+3$$
    $$\therefore a^{2}=9$$
    $$\therefore$$ least value of $$a=-3$$
  • Question 2
    1 / -0
    If $$\sin \theta +\cos \theta =1$$, then the value of $$\sin 2\theta$$ is equal to:
    Solution
    Given that $$\sin\theta+\cos\theta=1$$
    now squaring both side we have
    $$(\sin\theta+\cos\theta)^2=1^2$$
    $$\sin^2\theta+\cos^2\theta+2\sin\theta cos\theta=1$$
    $$1+2\sin\theta \cos\theta=1$$                   ($$\sin^2\theta+\cos^2\theta=1$$)
    $$2\sin\theta \cos\theta=0$$
    $$\sin2\theta=0$$           ($$\sin2\theta=2\sin\theta \cos\theta$$)
    hence option C is correct.
  • Question 3
    1 / -0
    If  x=$$\frac{{2\left( {\sin {1^o} + \sin {2^o} + \sin {3^o} + .... + \sin {{89}^o}} \right)}}{{2\left( {\cos {1^o} + \cos {2^o} + ..... + \cos {{44}^o}} \right) + 1}}$$, then the value of $${\log _x}2$$ is equal 
    Solution

  • Question 4
    1 / -0
    The number of solution of $$\sin 3x=\cos 2x$$ in the interval $$\left(\dfrac{\pi}{2},\pi\right)$$ is :
    Solution

    Simplifying $$\sin 3x = \cos 2x$$.

    $$\sin 3x = \cos 2x$$

    $$3\sin x - 4{\sin ^3}x = 1 - 2{\sin ^2}x$$

    $$4{\sin ^3}x - 2{\sin ^2}x - 3\sin x + 1 = 0$$

    Put $$\sin x = t$$.

    $$4{t^3} - 2{t^2} - 3t + 1 = 0$$

    $$\left( {t - 1} \right)\left( {4{t^2} + 2t - 1} \right) = 0$$

    $$t = 1$$

    Or,

    $$4{t^2} + 2t - 1 = 0$$

    $$t = \frac{{ - 2 \pm \sqrt {{{\left( 2 \right)}^2} - 4\left( 4 \right)\left( { - 1} \right)} }}{{2 \times 4}}$$

    $$ = \frac{{ - 2 \pm \sqrt {20} }}{8}$$

    $$ = \frac{{ - 2 \pm 2\sqrt 5 }}{8}$$

    $$ = \frac{{ - 1 \pm \sqrt 5 }}{4}$$

    Then,

    $$\sin x = 1$$

    $$x = \frac{\pi }{2}$$

    Or,

    $$\sin x = \frac{{ - 1 \pm \sqrt 5 }}{4}$$

    $$\sin x = \frac{{ - 1 + \sqrt 5 }}{4}$$

    $$x = \pi  + \frac{\pi }{{10}}$$

    $$x = \frac{{11\pi }}{{10}}$$

    Or,

    $$\sin x = \frac{{ - 1 - \sqrt 5 }}{4}$$

    $$x = 2\pi  - \frac{\pi }{{10}}$$

    $$x = \frac{{19\pi }}{{10}}$$

    So, $$x = \frac{\pi }{2}$$, $$x = \frac{{11\pi }}{{10}}$$ and $$x = \frac{{19\pi }}{{10}}$$.

    Since the given interval is $$\left( {\frac{\pi }{2},\pi } \right)$$, then, $$x = \frac{\pi }{2}$$ is the only solution.

    Therefore, the number of solutions of $$\sin 3x = \cos 2x$$ is 1.

  • Question 5
    1 / -0

    The solution set of the equation $$4 \sin \theta-2 \cos \theta-2\sqrt {3} \sin \theta+\sqrt {3}=0$$ in the interval $$(0,2\pi)$$ is-

    Solution
    $$4\sin\theta-2\cos\theta-2\sqrt 3\sin\theta+\sqrt 3=0$$
    $$\Rightarrow (2\cos\theta-\sqrt 3)(2\sin\theta-1)=0$$
    $$\therefore \cos \theta=\cfrac{\sqrt 3}{2}$$ or $$\sin\theta=\cfrac{1}{2}$$
    $$\theta=\cfrac{\pi}{6}, \cfrac{5\pi}{6}, \cfrac{11\pi}{6}$$
    At $$\theta=\cfrac{\pi}{6}, \cfrac{11\pi}{6}, \cos \theta=\cfrac{\sqrt 3}{2}$$
    At $$\theta=\cfrac{\pi}{6}, \cfrac{5\pi}{6}, \sin \theta=\cfrac{1}{2}$$
    $$\therefore \theta=\cfrac{\pi}{6}, \cfrac{5\pi}{6}, \cfrac{11\pi}{6}$$
  • Question 6
    1 / -0
    Find the principal solution of the following equation:
    $$\tan { x=\sqrt { 3 }  } $$
    Solution
    We have,
    $$\tan {x}=\sqrt{3}$$
    $$\tan {x}=\tan{\left(\dfrac{\pi}{3}\right)}$$
    $$\boxed{x=\pi/3}------eq^n (1)$$
    Put again equation
    $$\tan {x}=\tan{\left(\pi+\dfrac{\pi}{3}\right)}$$
    $$\boxed{x=\dfrac{4\pi}{3}}------eq^n (2)$$
    From equation $$(1)$$ and $$(2)$$
    $$\boxed{x=\dfrac{\pi}{3},\dfrac{4\pi}{3}}$$
    Hence this is the answer.
  • Question 7
    1 / -0
    The number of real solutions $$x$$ of the equation $$\cos ^ { 2 } ( x \sin ( 2 x ) ) + \frac { 1 } { 1 + x ^ { 2 } } - \cos ^ { 2 } x + \sec ^ { 2 } x$$ is
    Solution

  • Question 8
    1 / -0
     $$\dfrac{\cos A}{1- \sin A}$$=
    Solution
    $$\cfrac { \cos A }{ 1-\sin A } =\cfrac { \cos A(1+\sin A) }{ (1-\sin A)(1+\sin A) } =\cfrac { \cos A(1+\sin A) }{ { \cos }^{ 2 }A } \\ \cfrac { 1+\sin A }{ \cos A } =\cfrac { ({ \sin }^{ 2 }\cfrac { A }{ 2 } +{ \cos }^{ 2 }\cfrac { A }{ 2 } +2\sin\cfrac { A }{ 2 } .\cos\cfrac { A }{ 2 } ) }{ { \cos }^{ 2 }\cfrac { A }{ 2 } -{ \sin }^{ 2 }\cfrac { A }{ 2 }  } \\ \cfrac { { (\sin\cfrac { A }{ 2 } +\cos\cfrac { A }{ 2 } ) }^{ 2 } }{ \left( \cos\cfrac { A }{ 2 } +\sin\cfrac { A }{ 2 }  \right) \left( \cos\cfrac { A }{ 2 } +\sin\cfrac { A }{ 2 }  \right)  } \\ \\ $$
    Dividing numerator and denoinator by $$\cos\cfrac{A}{2}$$
    $$\cfrac { 1+\tan\cfrac { A }{ 2 }  }{ 1-\tan\cfrac { A }{ 2 }  } =\cfrac { \tan\cfrac { \pi  }{ 4 } +\tan\cfrac { A }{ 2 }  }{ 1-\tan\cfrac { \pi  }{ 2 } .\tan\cfrac { A }{ 2 }  } =\tan\left( \cfrac { \pi  }{ 4 } +\cfrac { A }{ 2 }  \right) $$
  • Question 9
    1 / -0
    Total number of solutions of $$\sin^{2}x-\sin x-1=0$$ in $$[-2\pi, 2\pi]$$ is equal to:
    Solution

  • Question 10
    1 / -0
    The solution set of equation
    $$4\sin{\theta}\cos{\theta}-2\cos{\theta}-2\sqrt{3}\sin{\theta}+\sqrt{3}=0$$ in the interval $$(0, 2\pi)$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now