Self Studies

Trigonometric Functions Test 31

Result Self Studies

Trigonometric Functions Test 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of solution of $$\sec x \cos 5x+1=0$$ in the interval $$[0,2\pi]$$ is
    Solution
    • Given- sec(x)cos(5x)+1=0
    • cos 5x/cos x + 1 = 0  
    • cos 5x + cos x = 0  
    • 2(cos 3x )( cos 2x) = 0  (cosA+cosB=2cos((A+B)/2)cos((A-B)/2)
    • (i) cos 3x = 0 ,  3x = (2 n + 1)π/2 ,  x = (2n + 1 ) π/6 
    • (ii)cos 2x = 0,  2x = (2 n + 1)π/2 , x = (2 n + 1)π/4 
    Therefore in [0,2π]
    x= π/6, 5π/6, 7π/6, 11π/6, π/4, 3π/4, 5π/4, 7π/4
    sec⁡xcos⁡5x+1=cos 5x/cos x + 1 = 0  cos 5x + cos x = 0  2cos 3x * cos 2x = 0 (i) cos 3x = 0  3x = (2 n + 1)π/2  x = (2n + 1 ) π/6 (ii)cos 2x = 0 2x = (2 n + 1)π/2 x = (2 n + 1)π/4 
  • Question 2
    1 / -0
    If $$2 \tan ^ { 2 } \theta - 5 \sec \theta = 1$$ has exactly $$7$$ solutions in the interval $$\left[ 0 , \dfrac { n \pi } { 2 } \right] , n \in N$$ then the least and  greatest values of $$n$$ are 
    Solution

  • Question 3
    1 / -0
    The value of $$\sqrt { 3 } \cot 20 ^ { \circ } - 4 \cos 20 ^ { \circ }$$ = __________________________.
    Solution

  • Question 4
    1 / -0
    If in a triangle $$ABC, \dfrac{b+c}{11}=\dfrac{c+a}{12}=\dfrac{a+b}{13}$$, then $$\cos A$$ is equal to:
    Solution
    $$\dfrac{b+c}{11}=\dfrac{c+a}{12}=\dfrac{a+b}{13}=k$$.
    $$b+c=11\ k,\, c+a=12\ k, \,a+b=13\ k$$.
    So $$2(a+b+c)=36\ k$$
             $$a+b+c=18\ k$$
    $$a=7\ k, b=6\ k, c=5\ k$$
    $$\cos A=\dfrac{b^2+c^2-a^2}{2bc}$$
    $$=\dfrac{(6k)^2+(5k)^2-(7k)^2}{2\times 6k\times 5k}$$
    $$=\dfrac{61\ k^2-49\ k^2}{60\ k^2}=\dfrac{12\ k^2}{60\ k^2}$$
    $$\cos A=\dfrac{1}{5}$$

  • Question 5
    1 / -0
    The number of real solutions of the equation $$\sin \left( e ^ { x } \right) = 5 ^ { x } + 5 ^ { - x }$$ is ____________________.
    Solution

  • Question 6
    1 / -0
    The value of $$\sin \dfrac {2\pi}{7}+\sin \dfrac {4\pi}{7}+\sin \dfrac {8\pi}{7}$$ is
  • Question 7
    1 / -0

    Directions For Questions

    Consider the curve $$x=1-3t^{2}, y=t-3r^{3}$$.  If a tangent at point $$(1-3t^{2}, t-3t^{3})$$ inclined at an angel $$\theta$$ to the positive
    $$x-axis$$ and another tangent at point $$P(2, 2)$$ cuts the curve
    again at $$Q$$.

    ...view full instructions

    The value of $$\tan\theta+\sec\theta$$ is equal to
    Solution

  • Question 8
    1 / -0
    If $$\tan^{2}\alpha-\tan^{2}\beta-\dfrac{1}{2}\sin(\alpha-\beta)\sec^{2}\alpha\sec^{2}\beta$$ is zero then value of $$\sin(\alpha+\beta)$$ is $$(\alpha\neq\beta)$$
    Solution

  • Question 9
    1 / -0
    If $$cos\alpha+cos\beta+cos\gamma=sin\alpha+sin\beta+sin\gamma$$ then $$cos^2\alpha+cos^2\beta+cos^2\gamma=?$$
    Solution

  • Question 10
    1 / -0
    $$tan(\cfrac {1} {2} \sin^{-1} \cfrac {4} {5} + \cfrac {1} {2}cos^{-1} \cfrac {15} {17})$$ is equal to 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now