We need to verify every option
$$(A)$$
Consider, $$\sin^2 \theta - \cos^2 \theta$$
$$=1-\cos^2 \theta-\cos^2 \theta$$
$$=1-2\cos^2 \theta$$
$$=-(2\cos^2 \theta-1)=-\cos 2\theta$$
Now, $$-\cos 2\theta=1$$ if $$\cos 2\theta=-1\implies 2\theta=\cos^{-1}(-1)=(2n+1)\pi$$
$$\implies \theta=\dfrac{(2n+1)\pi}{2}, n\in \mathbb{Z}$$
Thus, it is not true for every $$\theta$$
$$(B)$$
Consider, $$\text{cosec}^2\theta-\cot^2\theta$$
$$=\dfrac{1}{\sin^2 \theta}-\dfrac{\cos^2\theta}{\sin^2 \theta}$$
$$=\dfrac{1-\cos^2\theta}{\sin^2 \theta}=\dfrac{\sin^2 \theta}{\sin^2 \theta}=1$$
$$\therefore \text{cosec}^2\theta-\cot^2\theta=1,$$ For every value of $$\theta$$
$$(C)$$
$$\text{cosec}^2\theta-\cos^2 \theta=1\implies 1-\sin^2\theta \cos^2\theta=\sin^2\theta$$
$$\implies 1-\sin^2\theta=\sin^2\theta \cos^2\theta$$
$$\implies \sin^2\theta=1 \implies \theta=\dfrac{(2n+1)\pi}{2}$$
Thus, $$\text{cosec}^2\theta-\cos^2 \theta=1$$ is true for $$\theta=\dfrac{(2n+1)\pi}{2}$$ but not for all values of $$\theta$$.
$$(D)$$
$$\sec^2\theta-\sin^2\theta=1\implies \dfrac{1}{\cos^2\theta}-\sin^2\theta=1$$
$$\implies1-\sin^2\theta \cos^2\theta=\cos^2\theta$$
$$\implies \sin^2\theta=\sin^2\theta \cos^2\theta \implies \cos^2\theta=1$$
$$\implies \cos \theta=\pm 1 \implies \theta=n\pi, n\in \mathbb{Z}$$
$$\sec^2\theta-\sin^2\theta=1$$ for $$\theta\in \mathbb{Z}$$ but not for all values of $$\theta$$.
Hence, option B is correct.