Self Studies

Trigonometric Functions Test -7

Result Self Studies

Trigonometric Functions Test -7
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Which of the following statements is incorrect ?

    Solution

    secθ = 1/2 ⇒ cosθ = 2

    which is not possible since cosθcosθ is a periodic function whose value oscillates between -1 and 1

  • Question 2
    1 / -0
    For $$x  \in (0, \pi)$$, the equation $$\sin x + 2 \sin 2 x - \sin 3x =3$$, has 
    Solution

    $$\sin x + 2  \sin2x - \sin  3 x = 3$$

    $$\sin x+4  \sin x  \cos  x - 3 \sin  x + 4  \sin^3 x = 3$$

    $$\sin x  [-2 + 4  \cos x + 4 (1 - \cos^2  x)] =3$$

    $$\sin x [2 - (4 \cos^2 x - 4 \cos  x +1)+1] =3$$

    $$\sin x [3 - (2  \cos  x - 1)^2] =3$$

    $$\Rightarrow \sin  x = 1$$ and $$2 \cos  x - 1 =0$$

    $$\Rightarrow x = \dfrac{\pi}{2}$$  and $$x = \dfrac{\pi}{3}$$

    Which is not possible at same time.

    Hence, no solution.

  • Question 3
    1 / -0
    If $$0^{\circ}\leq \theta\leq 90^{\circ}$$ and $$\sqrt{3} tan\theta - sec\theta=1$$, then $$\theta$$ has the value
    Solution
    $$\sqrt{3} tan \theta -1 =sec \theta$$
    Squaring and substituting $$sec^2 \theta =1  + tan^2 \theta$$
    $$2 tan^2 \theta -2 \sqrt{3} tan \theta =0$$         $$\therefore 2 tan \theta (tan \theta - \sqrt{3}) =0$$
    $$\theta = 60^{\circ}$$ is one of the values.
  • Question 4
    1 / -0
    The of value of $$\quad \sin60^{\small\circ}\cos30^{\small\circ} + \cos60^{\small\circ}\sin30^{\small\circ}$$ is equal to
    Solution
    $$sin60^{0}cos30^{0}+cos60^{0}sin30^{0}$$
    $$=\frac{3}{4}+\frac{1}{4}$$
    $$=1$$
    $$=sin90^{0}$$

    $$4cos^{3}30^{0}-3cos30^{0}$$
    $$=\dfrac{3\sqrt{3}}{2}-\dfrac{3\sqrt{3}}{2}$$
    $$=0$$
    $$=cos90^{0}$$
  • Question 5
    1 / -0
    Which one of the following relations is true ?
    Solution
    (A) L.H.S $$={ \cos }^{ 2 }\theta -{ \sin }^{ 2 }\theta$$
    $$=1-2 { \sin }^{ 2 }\theta$$ is never $$=1$$.
    So this statement is not correct.

    (B) L.H.S $$={ \text{cosec} }^{ 2 }\theta -{ \sec }^{ 2 }\theta$$
    $$=\dfrac { 1 }{ { \cos }^{ 2 }\theta } -\dfrac { 1 }{ { \sin }^{ 2 }\theta } =\dfrac { { \sin }^{ 2 }\theta -{ \cos }^{ 2 }\theta }{ { \sin }^{ 2 }\theta } \neq 1\neq R.H.S$$
    $$\therefore$$ This statement is not correct.

    (C) L.H.S $$={ \cot }^{ 2 }\theta -{ \tan }^{ 2 }\theta$$
    $$ =\dfrac { { \cos }^{ 2 }\theta }{ { \sin }^{ 2 }\theta } -\dfrac { { \sin }^{ 2 }\theta }{ { \cot }^{ 2 }\theta } =\dfrac { { \cos }^{ 4 }\theta -{ { \sin }^{ 4 } }\theta }{ { \sin }^{ 2 }\theta { \cos }^{ 2 }\theta }$$

    $$ =\dfrac { ({ \cos }^{ 2 }\theta -{ \sin }^{ 2 }\theta )({ \cos }^{ 2 }\theta +{ \sin }^{ 2 }\theta ) }{ { \sin }^{ 2 }\theta { \cos }^{ 2 }\theta }$$

    $$ =\dfrac { { \cos }^{ 2 }\theta -{ \sin }^{ 2 }\theta }{ { \sin }^{ 2 }\theta { \cos }^{ 2 }\theta } \neq 1\neq R.H.S$$
    So this statement is not correct.

    (D) R.H.S $$={ \sec }^{ 2 }\theta -{ \tan }^{ 2 }\theta$$
    $$=\dfrac { 1 }{ { \cos }^{ 2 }\theta } -\dfrac { { \sin }^{ 2 }\theta }{ { \cos }^{ 2 }\theta } =\dfrac { 1-{ \sin }^{ 2 }\theta }{ { \cos }^{ 2 }\theta } =\dfrac { { \cos }^{ 2 }\theta }{ { \cos }^{ 2 }\theta } =1=L.H.S$$
    This statement is correct.
  • Question 6
    1 / -0
    The value of $$5\tan ^{ 2 }{ \theta  } -5\sec ^{ 2 }{ \theta  } $$ is :
    Solution
    $$5{ \tan }^{ 2 }\theta -5{ \sec }^{ 2 }\theta \\ =5({ \tan }^{ 2 }\theta- { \sec }^{ 2 }\theta )$$ 

    We know that
    $$ { \tan }^{ 2 }\theta +1={ \sec }^{ 2 }\theta \\ \Rightarrow { \tan }^{ 2 }\theta -{ \sec }^{ 2 }\theta =-1\\ \therefore 5(-1)=-5$$
  • Question 7
    1 / -0
    $$\displaystyle \frac { \sin { A }  }{ 1+\cos { A }  } +\frac { \sin { A }  }{ 1-\cos { A }  } $$ is equal to :
    Solution
    $$\displaystyle \frac { \sin { A }  }{ 1+\cos { A }  } +\frac { \sin { A }  }{ 1-\cos { A }  } $$
    $$\displaystyle =\sin { A\left[ \frac { 1-\cos { A } +1+\cos { A }  }{ \left( 1+\cos { A }  \right) \left( 1-\cos { A }  \right)  }  \right]  } $$
    $$\displaystyle =\sin { A } \left( \frac { 2 }{ { sin }^{ 2 }A }  \right) =\frac { 2 }{ \sin { A }  } =2cosecA$$
  • Question 8
    1 / -0
    If $$0^{\circ} \leq \theta \leq 90^{\circ}$$ and $$\sqrt{2} tan \theta - sec \theta =0$$, then the value of $$(\sqrt{2} sin  \theta + 2 tan  \theta)$$ is -
    Solution
    $$\sqrt{2} \tan \theta = \sec \theta\    or\   2 \tan^2 \theta = \tan^2 \theta +1$$
    $$\therefore \tan^2 \theta =1    \therefore \theta = 45^{\circ}$$
    $$\sqrt{2} \sin \theta + 2 \tan  \theta = \sqrt{2} \times \frac{1}{\sqrt{2}} + 2 \times 1 =3$$
  • Question 9
    1 / -0
    Which is true for all values of $$\theta$$?
    Solution
    We need to verify every option
    $$(A)$$
    Consider, $$\sin^2 \theta - \cos^2 \theta$$
                     $$=1-\cos^2 \theta-\cos^2 \theta$$
                     $$=1-2\cos^2 \theta$$
                     $$=-(2\cos^2 \theta-1)=-\cos 2\theta$$
    Now, $$-\cos 2\theta=1$$ if $$\cos 2\theta=-1\implies 2\theta=\cos^{-1}(-1)=(2n+1)\pi$$
    $$\implies \theta=\dfrac{(2n+1)\pi}{2}, n\in \mathbb{Z}$$
    Thus, it is not true for every $$\theta$$

    $$(B)$$
    Consider, $$\text{cosec}^2\theta-\cot^2\theta$$
                     $$=\dfrac{1}{\sin^2 \theta}-\dfrac{\cos^2\theta}{\sin^2 \theta}$$
                     $$=\dfrac{1-\cos^2\theta}{\sin^2 \theta}=\dfrac{\sin^2 \theta}{\sin^2 \theta}=1$$
    $$\therefore \text{cosec}^2\theta-\cot^2\theta=1,$$  For every value of $$\theta$$

    $$(C)$$
    $$\text{cosec}^2\theta-\cos^2 \theta=1\implies 1-\sin^2\theta \cos^2\theta=\sin^2\theta$$
    $$\implies 1-\sin^2\theta=\sin^2\theta \cos^2\theta$$
    $$\implies \sin^2\theta=1 \implies \theta=\dfrac{(2n+1)\pi}{2}$$ 
    Thus, $$\text{cosec}^2\theta-\cos^2 \theta=1$$ is true for $$\theta=\dfrac{(2n+1)\pi}{2}$$ but not for all values of $$\theta$$.

    $$(D)$$
    $$\sec^2\theta-\sin^2\theta=1\implies \dfrac{1}{\cos^2\theta}-\sin^2\theta=1$$
    $$\implies1-\sin^2\theta \cos^2\theta=\cos^2\theta$$
    $$\implies \sin^2\theta=\sin^2\theta \cos^2\theta \implies \cos^2\theta=1$$
    $$\implies \cos \theta=\pm 1 \implies \theta=n\pi, n\in \mathbb{Z}$$
    $$\sec^2\theta-\sin^2\theta=1$$ for $$\theta\in \mathbb{Z}$$ but not for all values of $$\theta$$.
    Hence, option B is correct.
  • Question 10
    1 / -0
    The value of $$ 1+ \cot^2 A$$ is
    Solution
    We know that,
    $$\cot A= \dfrac{\text{base}}{\text{perpendicular}} = \dfrac bp$$

    $$1+\cot^2A=1+\dfrac{b^2}{p^2}=\dfrac{b^2+p^2}{p^2}=\dfrac{h^2}{p^2}=\text{cosec}^2A$$
  • Question 11
    1 / -0
    $$sin^2x+cos^2x=$$
    Solution
    Identity used:
    $$\sin^2\theta+\cos^2\theta=1$$
    Option C is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now