Self Studies

Principle of Mathematical Induction Test - 10

Result Self Studies

Principle of Mathematical Induction Test - 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$n(n^{2}-1)$$ is divisible by $$24$$, then which of the following statements is true?
    Solution
    $$n({ n }^{ 2 }-1)\quad =\quad n*(n-1)*(n+1)$$
    If $$n$$ is even, then $$n-1$$ and $$n+1$$ will be odd, therefore $$n({ n }^{ 2 }-1)$$ is not divisible by 4 and therefore not divisible by 24.
    Hence $$n$$ has to be an odd integer. 
  • Question 2
    1 / -0
    If $$\forall m\in N$$, then $$11^{m+ 2}+12^{2m-1}$$ is divisible by
    Solution
    To find the divisor of  $${ 11 }^{ m+2 }+{ 12 }^{ 2m-1 }$$ by mathematic induction, the first step is to check for the smallest natural number, i.e; for $$m=1$$. So, this reduces to $${ 11 }^{ 3 }+{ 12 }^{ 1 }$$ or  $${ 11 }^{ 4 }+1$$.
    So, the  number when divided by $$11$$ leaves remainder 1. 
    So, we can knock out options $$A$$ and $$B$$ as $$121$$ as well as $$132$$ are both divisible by 11 and hence their multiples will always be divisible by 11. 
    Now, we have to check the divisibility of  $${ 11 }^{ m+2 }+{ 12 }^{ 2m-1 }$$ by $$133$$. For  $$m=1$$,  $${ 11 }^{ 4 }+1$$ is not divisible by $$133$$. 
    So, we can knock out option $$C$$.
    Hence, $$D$$  is correct.
  • Question 3
    1 / -0
    If $$n$$ is an even number, then the digit in the units place of $$2^{2n}+1$$ will be 
    Solution
    Since $${ 2 }^{ 2n }$$ is even therefore $${ 2 }^{ 2n }+1$$ is odd, 
    therefore digit at unit place should be odd, rejecting option 3.
    Put n = 2, we get $${ 2 }^{ 2n } +1$$ = 17, 
    hence digit should be 7
  • Question 4
    1 / -0
    Let $$P(n):1+\displaystyle \frac{1}{4}+\frac{1}{9}+\ldots..+\frac{1}{n^{2}}<2-\frac{1}{n}$$ is true for
    Solution
    For $$n=2,P\left( n \right) =1+\dfrac { 1 }{ { 2 }^{ 2 } } =1+\dfrac { 1 }{ 4 } =\dfrac { 5 }{ 4 } =1.25<2-\dfrac { 1 }{ 2 } =\dfrac { 3 }{ 2 } =1.5\\ P(3)=1+\dfrac { 1 }{ 4 } +\dfrac { 1 }{ 9 } =1.36<1.67$$
    $$\therefore P(2), P(3)$$ is true and so on.
    Let us assume $$P(n)$$ is true.
    $$P\left( n+1 \right) =1+\dfrac { 1 }{ 4 } +.....+\dfrac { 1 }{ { n }^{ 2 } } +\dfrac { 1 }{ { \left( n+1 \right)  }^{ 2 } } <2-\dfrac { 1 }{ n } +\dfrac { 1 }{ { \left( n+1 \right)  }^{ 2 } } \\ =2-\left\{ \dfrac { 1 }{ n } -\dfrac { 1 }{ { \left( n+1 \right)  }^{ 2 } }  \right\} =2-\dfrac { { n }^{ 2 }+n+1 }{ n{ \left( n+1 \right)  }^{ 2 } } =2-\dfrac { { n }^{ 2 }+n }{ n{ \left( n+1 \right)  }^{ 2 } } -\dfrac { 1 }{ n{ \left( n+1 \right)  }^{ 2 } } $$
    $$=2-\dfrac { 1 }{ n+1 } -\dfrac { 1 }{ n{ \left( n+1 \right)  }^{ 2 } } <2-\dfrac { 1 }{ n+1 } $$
    $$\therefore P(n+1)$$ is true.
    Thus, $$P(n)$$ is true for all $$n>1.$$
  • Question 5
    1 / -0
    Let $$x > -1$$, then statement $$p(n):(1 + x)^{n} > 1 + nx$$, where  $$ n \in N$$ is true for
    Solution
    p(1) :$$ (1 + x)^{1}$$ > 1 + x is false
    p(2) :$$ (1 + x)^{2} > 1 + 2x  \Rightarrow x^{2}$$ > 0 is   true  when $$x \neq  0$$
    p(3) :$$ (1 + x)^{3} > 1 + 3x  \Rightarrow x^{2}$$ > 0 is  true  when$$ x \neq  0$$
    Let p(k) $$ (1 + x)^{k}$$ > 1 + k x is  true  for  some  $$k  \epsilon  N$$, k >1
    $$\Rightarrow (1+x)^{k+1}$$ >(1+kx) (1+x)
    $$\Rightarrow (1+x)^{k+1} > 1+(k+1)x+kx^{2}  > 1 +(k+1)x, x \neq  0$$
    $$\Rightarrow$$p(k+1) is true whenever p(k) is true
    so by principle of mathematical induction p(n) is true for all n > 1 provided $$x \neq  0$$
  • Question 6
    1 / -0
    $$n(n+1) (n+5)$$ is a multiple of $$3$$ is true for
    Solution
    Let the statement be denoted by p(n) i.e.,
    P(n) : n(n+1) (n+5) is a multiple of 3
    For n $$=$$ 1, n(n+1) (n+5) $$=$$ 1.2.6 $$=$$ 12 $$=$$  3.4
    P(n) is true for n $$=$$ 1
    Suppose p(k) is true for n $$=$$ k i.e.
    k(k+1) (k+5) =3m (let) or k$$^3$$ + 6k$$^2$$ + 5k $$=$$ 3m      ........... (i)
    Replacing k by k+1,  we get
    (k+1) (k+2) (k+6) $$=$$ k  (k$$^2$$ +8k +12) + (k$$^2$$ + 8k + 12)
    $$k^3 + 9k^2 +20 k +12 = (k^3 + 6k^2 + 5k) + (3k^2 +15k + 12)$$
                           $$= 3m + 3k^2 +15k + 12$$    [from (i)]
                           $$= 3(m + k^2 + 5k +4)$$
    i.e. (k+1) (k+2) (k+6) is a multiple of 3
    i.e. P(k+1) is multiple of 3, if P(k) is a multiple of 3
    i.e. P(k+1) is true whenever P(k) is true.
    Hence P(n) is true for all n $$\in$$ N
  • Question 7
    1 / -0
    $$1.2 +2.2^2 +3.2^3+ .................+ n.2^n = (n-1)2^{n+1} + 2$$ is true for
    Solution
    Let P(n) be the given statement i.e. $$P(n) : 1.2 + 2.2^2 + 3.2^3+ ......... + n.2^n = (n-1)2^{n+1}+2$$
    Putting n $$=$$ 1, LHS $$=$$ 1.2 $$=$$ 2;  RHS $$=$$ 0+2 $$=$$ 2
    $$\therefore$$ P(n) is true for $$n=1$$ 
    Assume that P(n) is true for $$n=k$$
     i.e. P(k) is true i.e. $$1.2^2+ 2.2^2 + 3.2^3 + ........... + k.2$$ $$^k$$           Replacing k by k + 1, we get the next term $$=(k+1)2^{k+1}$$

    Adding it to both sides
    $$LHS = 1.2 +2.2^2 + 3.2^3+ ......... + k.2^{k}+ (k+1)2^{k+1}$$
    $$RHS = (k-1)2^{k+1}+2 + (k+1)2^{k+1}$$  
    $$=2^{k+1}[k-1+k+1]+2=2k2^{k+1}+2=(k+1-1)2^{k+1+1}+2$$
    This proves P(n) true for $$n= k+1$$
    Thus P(k+1) is true whenever P(k) is true
    Hence. P(n) is true for all n $$\in$$ N
  • Question 8
    1 / -0
    If $$n\in N$$, then $$n(n^2-1)$$ is divisible by
    Solution
    $${ n }{ (n }^{ 2 }-1)={ n }{ (n }-1){ (n }+1)$$

    One of the $$n$$, $$n+1$$ and $$n-1$$ will be a multiple of $$3$$. 

    Since $$n-1$$, $$n$$ and $$n+1$$ are three consecutive integers, therefore at least one of them will be divisible by $$2$$.

    Therefore $${ n }{ (n }^{ 2 }-1)$$ is divisible by $$6$$.

    Option d can be rejected by putting $$n = 2$$
  • Question 9
    1 / -0
    Using mathematical induction,
    $$\displaystyle \left ( 1 - \frac{1}{2^2} \right ) \left ( 1 - \frac{1}{3^2} \right ) \left ( 1 - \frac{1}{4^2} \right ) ......... \left ( 1 - \frac{1}{(n + 1)^2} \right )$$
    Solution
    $$\displaystyle \left ( 1 - \dfrac{1}{2^2} \right ) \left ( 1 - \dfrac{1}{3^2} \right ) \left ( 1 - \dfrac{1}{4^2} \right ) ......... \left ( 1 - \dfrac{1}{(n + 1)^2} \right )$$
    nth term is $$1-\dfrac{1}{(n+1)^2}$$
    for n=1 =>$$\dfrac{1}{(n+1)^2}$$=$$1-\dfrac{1}{4}$$ =$$\dfrac{3}{4}$$
    for n-1 series will be
    $$\left( 1-\dfrac { 1 }{ 2^{ 2 } }  \right) \left( 1-\dfrac { 1 }{ 3^{ 2 } }  \right) \left( 1-\dfrac { 1 }{ 4^{ 2 } }  \right) .........\left( 1-\dfrac { 1 }{ (n+1-1)^{ 2 } }  \right) \left( 1-\dfrac { 1 }{ (n+1)^{ 2 } }  \right) $$
    On simplyfying
    $$\left( \dfrac { 3 }{ { 2 }^{ 2 } }  \right) \left( \dfrac { 8 }{ { 3 }^{ 2 } }  \right) \left( \dfrac { 15 }{ { 4 }^{ 2 } }  \right) ........\left( \dfrac { (n+1)(n-1) }{ { n }^{ 2 } }  \right) \left( \dfrac { n(n+2) }{ { (n+1) }^{ 2 } }  \right) $$
    OR
    $$\left( \dfrac { 3 }{ { 2 }^{ 2 } }  \right) \left( \dfrac { 2*4 }{ { 3 }^{ 2 } }  \right) \left( \dfrac { 3*5 }{ { 4 }^{ 2 } }  \right) ........\left( \dfrac { (n+1)(n-1) }{ { n }^{ 2 } }  \right) \left( \dfrac { n(n+2) }{ { (n+1) }^{ 2 } }  \right) $$
    Now all terms will cancel out with each other from denominator to numinator only $$\dfrac{1}{2}$$ from first term and $$(\dfrac{n+2}{n+1})$$ from last term will remain
    Therefore, Answer is $$\dfrac{1}{2}(\dfrac{n+2}{n+1})$$
  • Question 10
    1 / -0
    For all positive integers $$n$$, $$P(n)$$ is true , and $$2^{n-2}>3n$$, then which of the following is true?
    Solution
    $$2^{n-2}>3n$$
    Put $$n=3$$ 
    $$2\ngtr 6$$
    Hence, P(3) is not true.

    Put $$n=5$$ 
    $$8\ngtr 15$$
    Hence, P(3) is not true.

    Let $$P(m)$$ is true i.e.
    $$2^{m-2}>3m$$

    Now, we will check for $$P(m+1)$$
    Consider , $$2^{m-1}$$
    $$=2^{m-2}.2$$
    $$>2(3m)=6m=3m+3m $$
    $$>3m+3$$
    Hence, $$2^{m-1}>3(m+1)$$
    Hence, $$P(m+1)$$ is true.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now