Self Studies

Principle of Mathematical Induction Test - 11

Result Self Studies

Principle of Mathematical Induction Test - 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If P(n)P(n) is statement such that P(3)P(3) is true. Assuming P(k) is true \Rightarrow P(k+1)P(k+1) is true for all kk \geq 22, then P(n) P(n) is true.
    Solution
    Given P(3)P (3) is true.
    Assume P(k)P(k) is true \Rightarrow P(k+1)P(k+1) is true means if P(3)P(3) is true \Rightarrow P(4)P(4) is true \Rightarrow P(5)P(5) is true and so on. So statement is true for all n3n\geq3.
  • Question 2
    1 / -0
    12+14+18+.........+12n=112n\displaystyle \frac{1}{2} + \frac{1}{4}+ \frac{1}{8} + ......... + \frac{1}{2^n} = 1 - \frac{1}{2^n} is true for
    Solution
    Let P(n):12+14+18+..........+12n=1 12n: \displaystyle \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + .......... + \frac{1}{2^n} = 1  - \frac{1}{2^n}
    Putting n=1,LHS=12,RHS=112=12n=1, LHS = \frac{1}{2} , RHS = 1 - \frac{1}{2} = \frac{1}{2} i.e., LHS == RHS =12= \frac{1}{2}
    \therefore P(n) is true for n== 1.
    Suppose P(n) is true for n== k
    12+14+18+.........+12k=112k\therefore \displaystyle \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ......... + \frac{1}{2^k} = 1 - \frac{1}{2^k}
    last term =12k= \displaystyle \frac{1}{2^k}; Replacing k by k+1, last term =12k+1=\displaystyle \frac{1}{2^{k+1}}
    Adding 12k+1\displaystyle \frac{1}{2^{k+1}} to both sides,
    LHS=12+14+18+........+12k+12k+1LHS = \displaystyle \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ........ + \frac{1}{2^k}+ \frac{1}{2^{k+1}}
    RHS=112k+12k+1=112k(112)=112k 12=112k+1RHS = 1 - \displaystyle \frac{1}{2^k} + \frac{1}{2^{k+1}}=1-\dfrac{1}{2^k} \left ( 1 - \frac{1}{2} \right ) = 1 - \frac{1}{2^k}  \cdot \frac{1}{2} = 1 - \frac{1}{2^{k+1}}
    This shows P(n) is true for n == k+1
    Thus P(k+1) is true whenever P(k) is true
    Hence, P(n) is true for all n \in N
  • Question 3
    1 / -0
    1.3+3.5+5.7+...........+(2n1)(2n+1)=n(4n2+6n1)31.3 + 3.5 + 5.7 + ........... + (2n -1) (2n + 1) = \displaystyle \frac{n (4n^2 + 6n -1)}{3} is true for
    Solution
    Le P(n) be the given statement
    i.e. P(n) : 1.3 + 3.5 + 5.7 + ........... + (2n -1)(2n+1)
    =n(4n2+6n1)3=\displaystyle \frac{n (4n^2 + 6n -1)}{3}
    Putting n=1,L.H.S.=1.3=3n=1, L.H.S. = 1.3 = 3 and RHS=1(4.12+6.11)3RHS = \displaystyle \frac{1 (4.1^2 + 6.1 -1)}{3}
    =4+613=93=3 = \displaystyle \frac{4 + 6 -1}{3} = \frac{9}{3} = 3
    LHS == RHS
    \therefore P(n) is true for n == 1
    Assume that P(n) is true for n == k
    i.e., p(k) is true
    i.e., P(k) : 1.3 + 3.5 + 5.7 + ............ + (2k-1)(2k+1)
    =k(4k2+6k1)3= \displaystyle \frac{k (4k^2 + 6k -1)}{3}
    Last term == (2k -1)(2k +1)
    Replacing k by (k+1), we get
    [2(k+1)1][2(k+1)+1]=(2k+1)(2k+3)[2(k+1)-1] [2 (k+1)+1]= (2k+1)(2k + 3)
    \therefore Adding (2k+1)(2k+3) on both sides.
    LHS=1.3+3.5+5.7+...........+(2k1)(2k+1)+(2k+1)(2k+3)\therefore LHS = 1.3 + 3.5 + 5.7 + ........... + (2k-1) (2k +1) + (2k +1) (2k +3)
    R.H.S=k(4k2+6k1)3+(2k+1)(2k+3)R.H.S = \displaystyle \frac{k (4k^2 + 6k -1)}3{} + (2k +1) (2k +3)
    =(4k3+6k2k)+3(2k+1)(2k+3)3 = \displaystyle \frac{(4k^3 + 6k^2 - k) + 3 (2k +1) (2k +3)}{3}
    =4k3+18k2+23+93 = \displaystyle \frac{4k^3 + 18k^2 +23 +9}{3}
    =(k+1)(4k2+14k+9)3= \displaystyle \frac{(k+1) (4k^2 + 14 k +9)}{3}
    =(k+1)(4(k+1)2+6(k+1)1)3 = \displaystyle \frac{(k+1)(4 (k+1)^2 + 6 (k+1)-1)}{3}    ............ (iii)
    Thus, P(n) is true for n == k + 1
    \therefore P(k+1) is true whenever P(k) is true
    Hence, by P(n) is true for all n \in N
  • Question 4
    1 / -0
    nN,242n+1+33n+1\forall n\in N, 2 \cdot 4^{2n + 1} + 3^{3n + 1} is divisible by
    Solution
    For n=1n = 1, we have
    242n+1+33n+1=2×43+34=2092 \cdot 4^{2n + 1} + 3^{3n + 1} = 2 \times 4^3 + 3^4 = 209, which is divisible by 1111
    For n=2n = 2, we have
    242n+1+33n+1=2×45+37=42352 \cdot 4^{2n + 1} + 3^{3n + 1} = 2 \times 4^5 + 3^7 = 4235, which is divisible by 1111
    Hence, options (c) is true.
  • Question 5
    1 / -0
    nN,33n26n\forall n\in N, 3^{3n} - 26^{n} is divisible by
    Solution
    Put n=2n=2
    33n26n=36262=533^{3n}-26^n = 3^6-26^2 =53 which is not divisible by any  24,64,1724,64,17
    Hence option 'D' is correct choice.
  • Question 6
    1 / -0
    72n+3n123n37^{2n} + 3^{n - 1} \cdot 2^{3n - 3} is divisible by
    Solution
    Let  P(1)=72n+3n123n3P(1) = 7^{2n} + 3^{n - 1} \cdot 2^{3n - 3}

    P(1)=50P(1) = 50\Rightarrow Divisible by 2525

    Hence option 'B' is the correct choice.
  • Question 7
    1 / -0
    nN; 102n1+1\forall n\in N; 10^{2n - 1}+1 is divisible by
    Solution
    For n=1n = 1, we have
    102n1+1=10+1=1110^{2n - 1} + 1 = 10 + 1 = 11E, which is divisible by 1111.

    For n=2n = 2, we have
    102n1+1=103+1=100110^{2n - 1} + 1 = 10^3 + 1 = 1001, which is divisible by 1111.

    nN;102n1+1\forall n\in N; 10^{2n - 1}+1 is divisible by 11.

    Hence, option (d) is correct.
  • Question 8
    1 / -0
    If xn1x^n - 1 is divisible by xkx - k, then the least positive integral value of kk is
    Solution
    if f(x)=xn1f(x)=x^n-1 is divisible by xkx-k
    Then f(k)=0f(k)=0
    Therefore, kn=1k^n=1
    and thus least positive integral value of k is 1
  • Question 9
    1 / -0
    nN,n4\forall n\in N, n^4 is less than
    Solution
    Let   y=n4y =n^4
    put n=10y=104=10000>4×10,44n=10\Rightarrow y = 10^4=10000>4\times 10, 4^4
    Hence option B and C discarded.
    Now put n=103y=1012>1010n = 10^3\Rightarrow y = 10^{12}>10^{10}. thus option D is also incorrect.
    Hence option 'A' is correct.
  • Question 10
    1 / -0
    If  nn   \in N, then x2n1+y2n1x^{2n - 1} + y^{2n - 1} is divisible by
    Solution
    Le4 the given statement be P(n)P\left( n \right)
    P(n)=x2n1+y2n1P\left( n \right) ={ x }^{ 2n-1 }+{ y }^{ 2n-1 }
    We check P(n)P\left( n \right) for n=1n=1
    P(1)=x21+y21=x+yP\left( 1 \right) ={ x }^{ 2-1 }+{ y }^{ 2-1 }=x+y
    Thus P(1)P\left( 1 \right) is divisible by x+yx+y

    Let us assume that P(n)P\left( n \right) is divisible by x+yx+y when n=kn=k
    Now for n=k+1n=k+1 we have
    P(k+1)=x2k+1+y2k+1P\left( k+1 \right) ={ x }^{ 2k+1 }+{ y }^{ 2k+1 }
    P(k+1)=(x2)(x2k1)+(y2)(y2k1)\Rightarrow P\left( k+1 \right) =\left( { x }^{ 2 } \right) \left( { x }^{ 2k-1 } \right) +\left( { y }^{ 2 } \right) \left( { y }^{ 2k-1 } \right)
    P(k+1)=(x2)(x2k1y2)(x2k1+y2)(x2k1)+(y2)(y2k1)\Rightarrow P\left( k+1 \right) =\left( { x }^{ 2 } \right) \left( { x }^{ 2k-1 }-{ y }^{ 2 } \right) \left( { x }^{ 2k-1 }+{ y }^{ 2 } \right) \left( { x }^{ 2k-1 } \right) +\left( { y }^{ 2 } \right) \left( { y }^{ 2k-1 } \right)
    P(k+1)=(x2y2)(x2k1)+(y2)(y2k1+x2k1)\Rightarrow P\left( k+1 \right) =\left( { x }^{ 2 }-{ y }^{ 2 } \right) \left( { x }^{ 2k-1 } \right) +\left( { y }^{ 2 } \right) \left( { y }^{ 2k-1 }+{ x }^{ 2k-1 } \right)
    P(k+1)=(xy)(x+y)(x2k1)+(y2)(y2k1+x2k1)\Rightarrow P\left( k+1 \right) =\left( { x }-{ y } \right) \left( { x }+{ y } \right) \left( { x }^{ 2k-1 } \right) +\left( { y }^{ 2 } \right) \left( { y }^{ 2k-1 }+{ x }^{ 2k-1 } \right)

    Now (xy)(x+y)(x2k1)\left( { x }-{ y } \right) \left( { x }+{ y } \right) \left( { x }^{ 2k-1 } \right) and (y2)(y2k1+x2k1)\left( { y }^{ 2 } \right) \left( { y }^{ 2k-1 }+{ x }^{ 2k-1 } \right) are divisible by x+yx+y
    so x2k+1+y2k+1{ x }^{ 2k+1 }+{ y }^{ 2k+1 } is also divisible by x+yx+y
    So x2n1+y2n1{ x }^{ 2n-1 }+{ y }^{ 2n-1 } is divisible by x+yx+y when n=k+1n=k+1 if it is divisible by x+yx+y when n=kn=k
    so by principle of mathematical induction, x2n1+y2n1{ x }^{ 2n-1 }+{ y }^{ 2n-1 } is divisible by x+yx+y 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now