Le4 the given statement be $$P\left( n \right) $$
$$P\left( n \right) ={ x }^{ 2n-1 }+{ y }^{ 2n-1 }$$
We check $$P\left( n \right) $$ for $$n=1$$
$$P\left( 1 \right) ={ x }^{ 2-1 }+{ y }^{ 2-1 }=x+y$$
Thus $$P\left( 1 \right) $$ is divisible by $$x+y$$
Let us assume that $$P\left( n \right) $$ is divisible by $$x+y$$ when $$n=k$$
Now for $$n=k+1$$ we have
$$P\left( k+1 \right) ={ x }^{ 2k+1 }+{ y }^{ 2k+1 }$$
$$\Rightarrow P\left( k+1 \right) =\left( { x }^{ 2 } \right) \left( { x }^{ 2k-1 } \right) +\left( { y }^{ 2 } \right) \left( { y }^{ 2k-1 } \right) $$
$$\Rightarrow P\left( k+1 \right) =\left( { x }^{ 2 } \right) \left( { x }^{ 2k-1 }-{ y }^{ 2 } \right) \left( { x }^{ 2k-1 }+{ y }^{ 2 } \right) \left( { x }^{ 2k-1 } \right) +\left( { y }^{ 2 } \right) \left( { y }^{ 2k-1 } \right) $$
$$\Rightarrow P\left( k+1 \right) =\left( { x }^{ 2 }-{ y }^{ 2 } \right) \left( { x }^{ 2k-1 } \right) +\left( { y }^{ 2 } \right) \left( { y }^{ 2k-1 }+{ x }^{ 2k-1 } \right) $$
$$\Rightarrow P\left( k+1 \right) =\left( { x }-{ y } \right) \left( { x }+{ y } \right) \left( { x }^{ 2k-1 } \right) +\left( { y }^{ 2 } \right) \left( { y }^{ 2k-1 }+{ x }^{ 2k-1 } \right) $$
Now $$\left( { x }-{ y } \right) \left( { x }+{ y } \right) \left( { x }^{ 2k-1 } \right) $$ and $$\left( { y }^{ 2 } \right) \left( { y }^{ 2k-1 }+{ x }^{ 2k-1 } \right) $$ are divisible by $$x+y$$
so $${ x }^{ 2k+1 }+{ y }^{ 2k+1 }$$ is also divisible by $$x+y$$
So $${ x }^{ 2n-1 }+{ y }^{ 2n-1 }$$ is divisible by $$x+y$$ when $$n=k+1$$ if it is divisible by $$x+y$$ when $$n=k$$
so by principle of mathematical induction, $${ x }^{ 2n-1 }+{ y }^{ 2n-1 }$$ is divisible by $$x+y$$