Self Studies

Principle of Mathematical Induction Test - 11

Result Self Studies

Principle of Mathematical Induction Test - 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$P(n)$$ is statement such that $$P(3)$$ is true. Assuming P(k) is true $$\Rightarrow$$ $$P(k+1)$$ is true for all $$k$$ $$\geq$$ $$2$$, then $$ P(n)$$ is true.
    Solution
    Given $$P (3)$$ is true.
    Assume $$P(k)$$ is true $$\Rightarrow$$ $$P(k+1)$$ is true means if $$P(3)$$ is true $$\Rightarrow$$ $$P(4)$$ is true $$\Rightarrow$$ $$P(5)$$ is true and so on. So statement is true for all $$n\geq3$$.
  • Question 2
    1 / -0
    $$\displaystyle \frac{1}{2} + \frac{1}{4}+ \frac{1}{8} + ......... + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$ is true for
    Solution
    Let P(n)$$: \displaystyle \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + .......... + \frac{1}{2^n} = 1  - \frac{1}{2^n}$$
    Putting $$n=1, LHS = \frac{1}{2} , RHS = 1 - \frac{1}{2} = \frac{1}{2}$$ i.e., LHS $$=$$ RHS $$= \frac{1}{2}$$
    $$\therefore$$ P(n) is true for n$$=$$ 1.
    Suppose P(n) is true for n$$=$$ k
    $$\therefore \displaystyle \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ......... + \frac{1}{2^k} = 1 - \frac{1}{2^k}$$
    last term $$= \displaystyle \frac{1}{2^k}$$; Replacing k by k+1, last term $$=\displaystyle \frac{1}{2^{k+1}}$$
    Adding $$\displaystyle \frac{1}{2^{k+1}}$$ to both sides,
    $$LHS = \displaystyle \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ........ + \frac{1}{2^k}+ \frac{1}{2^{k+1}}$$
    $$RHS = 1 - \displaystyle \frac{1}{2^k} + \frac{1}{2^{k+1}}=1-\dfrac{1}{2^k} \left ( 1 - \frac{1}{2} \right ) = 1 - \frac{1}{2^k}  \cdot \frac{1}{2} = 1 - \frac{1}{2^{k+1}}$$
    This shows P(n) is true for n $$=$$ k+1
    Thus P(k+1) is true whenever P(k) is true
    Hence, P(n) is true for all n $$\in$$ N
  • Question 3
    1 / -0
    $$1.3 + 3.5 + 5.7 + ........... + (2n -1) (2n + 1) = \displaystyle \frac{n (4n^2 + 6n -1)}{3}$$ is true for
    Solution
    Le P(n) be the given statement
    i.e. P(n) : 1.3 + 3.5 + 5.7 + ........... + (2n -1)(2n+1)
    $$=\displaystyle \frac{n (4n^2 + 6n -1)}{3}$$
    Putting $$n=1, L.H.S. = 1.3 = 3$$ and $$RHS = \displaystyle \frac{1 (4.1^2 + 6.1 -1)}{3}$$
    $$ = \displaystyle \frac{4 + 6 -1}{3} = \frac{9}{3} = 3$$
    LHS $$=$$ RHS
    $$\therefore$$ P(n) is true for n $$=$$ 1
    Assume that P(n) is true for n $$=$$ k
    i.e., p(k) is true
    i.e., P(k) : 1.3 + 3.5 + 5.7 + ............ + (2k-1)(2k+1)
    $$= \displaystyle \frac{k (4k^2 + 6k -1)}{3}$$
    Last term $$= $$ (2k -1)(2k +1)
    Replacing k by (k+1), we get
    $$[2(k+1)-1] [2 (k+1)+1]= (2k+1)(2k + 3)$$
    $$\therefore $$ Adding (2k+1)(2k+3) on both sides.
    $$\therefore LHS = 1.3 + 3.5 + 5.7 + ........... + (2k-1) (2k +1) + (2k +1) (2k +3)$$
    $$R.H.S = \displaystyle \frac{k (4k^2 + 6k -1)}3{} + (2k +1) (2k +3)$$
    $$ = \displaystyle \frac{(4k^3 + 6k^2 - k) + 3 (2k +1) (2k +3)}{3}$$
    $$ = \displaystyle \frac{4k^3 + 18k^2 +23 +9}{3}$$
    $$= \displaystyle \frac{(k+1) (4k^2 + 14 k +9)}{3}$$
    $$ = \displaystyle \frac{(k+1)(4 (k+1)^2 + 6 (k+1)-1)}{3}$$    ............ (iii)
    Thus, P(n) is true for n $$=$$ k + 1
    $$\therefore $$ P(k+1) is true whenever P(k) is true
    Hence, by P(n) is true for all n $$\in$$ N
  • Question 4
    1 / -0
    $$\forall n\in N, 2 \cdot 4^{2n + 1} + 3^{3n + 1}$$ is divisible by
    Solution
    For $$n = 1$$, we have
    $$2 \cdot 4^{2n + 1} + 3^{3n + 1} = 2 \times 4^3 + 3^4 = 209$$, which is divisible by $$11$$
    For $$n = 2$$, we have
    $$2 \cdot 4^{2n + 1} + 3^{3n + 1} = 2 \times 4^5 + 3^7 = 4235$$, which is divisible by $$11$$
    Hence, options (c) is true.
  • Question 5
    1 / -0
    $$\forall n\in N, 3^{3n} - 26^{n}$$ is divisible by
    Solution
    Put $$n=2$$
    $$3^{3n}-26^n = 3^6-26^2 =53$$ which is not divisible by any  $$24,64,17$$
    Hence option 'D' is correct choice.
  • Question 6
    1 / -0
    $$7^{2n} + 3^{n - 1} \cdot 2^{3n - 3}$$ is divisible by
    Solution
    Let  $$P(1) = 7^{2n} + 3^{n - 1} \cdot 2^{3n - 3}$$

    $$P(1) = 50\Rightarrow $$ Divisible by $$25$$

    Hence option 'B' is the correct choice.
  • Question 7
    1 / -0
    $$\forall n\in N; 10^{2n - 1}+1$$ is divisible by
    Solution
    For $$n = 1$$, we have
    $$10^{2n - 1} + 1 = 10 + 1 = 11$$E, which is divisible by $$11$$.

    For $$n = 2$$, we have
    $$10^{2n - 1} + 1 = 10^3 + 1 = 1001$$, which is divisible by $$11$$.

    $$\forall n\in N; 10^{2n - 1}+1$$ is divisible by 11.

    Hence, option (d) is correct.
  • Question 8
    1 / -0
    If $$x^n - 1$$ is divisible by $$x - k$$, then the least positive integral value of $$k$$ is
    Solution
    if $$f(x)=x^n-1$$ is divisible by $$x-k$$
    Then $$f(k)=0$$
    Therefore, $$k^n=1$$
    and thus least positive integral value of k is 1
  • Question 9
    1 / -0
    $$\forall n\in N, n^4$$ is less than
    Solution
    Let   $$y =n^4$$
    put $$n=10\Rightarrow y = 10^4=10000>4\times 10, 4^4$$
    Hence option B and C discarded.
    Now put $$n = 10^3\Rightarrow y = 10^{12}>10^{10}$$. thus option D is also incorrect.
    Hence option 'A' is correct.
  • Question 10
    1 / -0
    If  $$n$$ $$ \in$$ N, then $$x^{2n - 1} + y^{2n - 1}$$ is divisible by
    Solution
    Le4 the given statement be $$P\left( n \right) $$
    $$P\left( n \right) ={ x }^{ 2n-1 }+{ y }^{ 2n-1 }$$
    We check $$P\left( n \right) $$ for $$n=1$$
    $$P\left( 1 \right) ={ x }^{ 2-1 }+{ y }^{ 2-1 }=x+y$$
    Thus $$P\left( 1 \right) $$ is divisible by $$x+y$$

    Let us assume that $$P\left( n \right) $$ is divisible by $$x+y$$ when $$n=k$$
    Now for $$n=k+1$$ we have
    $$P\left( k+1 \right) ={ x }^{ 2k+1 }+{ y }^{ 2k+1 }$$
    $$\Rightarrow P\left( k+1 \right) =\left( { x }^{ 2 } \right) \left( { x }^{ 2k-1 } \right) +\left( { y }^{ 2 } \right) \left( { y }^{ 2k-1 } \right) $$
    $$\Rightarrow P\left( k+1 \right) =\left( { x }^{ 2 } \right) \left( { x }^{ 2k-1 }-{ y }^{ 2 } \right) \left( { x }^{ 2k-1 }+{ y }^{ 2 } \right) \left( { x }^{ 2k-1 } \right) +\left( { y }^{ 2 } \right) \left( { y }^{ 2k-1 } \right) $$
    $$\Rightarrow P\left( k+1 \right) =\left( { x }^{ 2 }-{ y }^{ 2 } \right) \left( { x }^{ 2k-1 } \right) +\left( { y }^{ 2 } \right) \left( { y }^{ 2k-1 }+{ x }^{ 2k-1 } \right) $$
    $$\Rightarrow P\left( k+1 \right) =\left( { x }-{ y } \right) \left( { x }+{ y } \right) \left( { x }^{ 2k-1 } \right) +\left( { y }^{ 2 } \right) \left( { y }^{ 2k-1 }+{ x }^{ 2k-1 } \right) $$

    Now $$\left( { x }-{ y } \right) \left( { x }+{ y } \right) \left( { x }^{ 2k-1 } \right) $$ and $$\left( { y }^{ 2 } \right) \left( { y }^{ 2k-1 }+{ x }^{ 2k-1 } \right) $$ are divisible by $$x+y$$
    so $${ x }^{ 2k+1 }+{ y }^{ 2k+1 }$$ is also divisible by $$x+y$$
    So $${ x }^{ 2n-1 }+{ y }^{ 2n-1 }$$ is divisible by $$x+y$$ when $$n=k+1$$ if it is divisible by $$x+y$$ when $$n=k$$
    so by principle of mathematical induction, $${ x }^{ 2n-1 }+{ y }^{ 2n-1 }$$ is divisible by $$x+y$$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now