Self Studies

Principle of Mathematical Induction Test - 12

Result Self Studies

Principle of Mathematical Induction Test - 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For all $$n\in N, \sum n$$ is
    Solution
    $$\displaystyle \sum n = \dfrac{n(n+1)}2=\dfrac{n^2+n}2=\dfrac{4n^2+4n}{8}$$

    $$\quad = \dfrac{4n^2+4n+1-1}{8}=\dfrac{(2n+1)^2-1}{8}$$

    $$\quad =\dfrac{(2n+1)^2}{8}-\dfrac{1}{8}<\dfrac{(2n+1)^2}{8}$$

    Hence option 'A' is correct choice. 
  • Question 2
    1 / -0
    If $$49^{n} + 16 n + \lambda$$ is divisible by $$64$$ for all $$n\in N$$, then the least negative integral value of $$\lambda$$ is
    Solution
    For $$n = 1$$, we have
    $$49^n + 16 n + \lambda = 49 + 16 + \lambda = 65 + \lambda= 64 + (\lambda + 1)$$, which is divisible by 64 if $$\lambda = -1$$.
    For $$n = 2$$, we have
    $$49^n + 16 n + \lambda = 49^2 + 16 \times 2 + \lambda = 2433 + \lambda= (64 \times 38) + (\lambda + 1)$$, which is divisible by 64 if $$\lambda = -1$$
    Hence, $$\lambda = -1$$.
  • Question 3
    1 / -0
    Let $$P(m)$$ be the statement $$m^{2}> 100$$, the statement $$P(k + 1)$$ will be true if
    Solution
    $$P(r)$$ is true 
    $$\displaystyle \Rightarrow r^{2}> 100$$ $$\displaystyle \Rightarrow r^{2}+2r+1> 100+2r+1$$ 
    $$\displaystyle \Rightarrow \left ( r+1 \right )^{2}> 100$$
    $$\displaystyle \Rightarrow P(r+1)$$ is true as 
    $$\displaystyle r^{2}+\left ( 2r+1 \right )>r^{2}> 100 $$ $$\displaystyle \Rightarrow P\left (k+1  \right )$$ is true (say $$r=k$$) 
    $$P(k+1)$$ is true when every $$p(k)$$ is 
    So, In order to prove that $$P(k+1)$$ is true. 
    It is sufficient to consider $$P(k)$$ is true.
  • Question 4
    1 / -0
    Let $$P(n)$$ be a statement such that truth of $$P\left ( n \right )\Rightarrow $$ the truth of $$P\left ( n+1 \right )$$ for all $$n\epsilon N$$, then $$P(n)$$ is true
    Solution
    Let $$P\left( n \right) $$ be a statement such that truth of $$P\left( n \right) \Rightarrow P\left( n+1 \right) $$ for all $$n\in N$$

    Now from the statement of the Principle of Mathematical Induction,

     we know that if a statement is assumed true for $$n=k$$ and then if it holds true for $$n=k+1$$ and $$n=1$$, then the statement is true for all $$n$$.

    So $$P\left( n \right) \Rightarrow P\left( n+1 \right) $$ is given so for $$P\left( n \right) $$ to be true for all $$n\in N$$, $$P\left( 1 \right) $$ should be true. 

    But nothing has been stated about $$P\left( 1 \right) $$. so nothing can be said about the truth of $$P\left( n \right) $$.
  • Question 5
    1 / -0
    $$\displaystyle x^{3^{n}}+y^{3^{n}}$$ is divisible by $$x+y$$, if 
    Solution

  • Question 6
    1 / -0
    For $$n \in N, x^{n + 1} + (x + 1)^{2n - 1}$$ is divisible by
    Solution
    For $$n = 1$$, we have
    $$x^{n + 1} + (x + 1)^{2n - 1}$$
    $$= x^2 + (x + 1) = x^2 + x + 1$$, which is divisible by $$x^2 + x + 1.$$
    For $$n = 2$$, we have
    $$x^{n + 1} + (x + 1)^{2n - 1}$$
    $$= x^3 + (x + 1)^3$$
    $$= (2x + 1) (x^2 + x + 1)$$, which is divisible by $$x^2 + x + 1.$$
    Hence, option (c) is true.
  • Question 7
    1 / -0
    Statement  1 : For each natural number $$n, (n + 1)^7 - n^7 - 1$$ is divisible by 7.
    Statement  2 : For each natural $$n$$, $$n^7 - n$$ is divisible by 7.
    Solution
    It can be checked by using the Principle of mathematical induction that statement - 2 is true for all $$n \in N.$$ 

    So, statement - 2 is correct.

    Now, $$(n + 1)^7 - n^7 - 1 = \left \{ (n + 1)^7 - (n + 1) \right \} - \left \{ n^7 - n \right \}$$ 

    Here both the terms are divisible by $$7.$$ 

    Therefore, $$(n + 1)^7 - n^7 - 1$$ is also divisible by $$7$$. 

    So, statement - 1 is correct and statement-2 is a correct explanation for statement-1.
  • Question 8
    1 / -0
    Let $$P\left ( n \right )=n\left ( n+1 \right )$$ is an even number, then which of the following satisfy $$P(n)$$
    Solution
    Given, $$P(n)=n(n+1)$$

    $$\displaystyle \therefore  P(3)=3.4=12(even) $$

    $$\displaystyle P(100)=100\times 101=10100(even)$$

     $$\displaystyle P(50)=50\times 51=2520(even)$$ 

    As $$P(3), P(100),P(50)$$ are even numbers. 

     Short cut Method: $$P(n)=n(n+1)$$

    Product of two consecutive integer (natural numbers) is always even.
  • Question 9
    1 / -0
    For each natural number, the statement $$P\left ( n \right )=2^{3n}-1$$ is divisible by
    Solution
    $$P\left( n \right) =2^{ 3n }-1=8^n-1$$

    $$P(n)={ \left( 1+7 \right)  }^{ n }-1$$

    $$\Rightarrow P\left( n \right) =1+^n{ { C }_{ 1 } } \times 7+^{ n }{ { C }_{ 2 } }\times 7^{ 2 }+...+^{ n }{ { C }_{ n } }\times 7^{ n }-1$$

    $$\Rightarrow P\left( n \right) =7\left( ^{ n }{ { C }_{ 1 } }+^{ n }{ { C }_{ 2 } }7+...+^{ n }{ { C }_{ n } }7^{ n-1 } \right) $$

    Therefore, $$P(n)$$ is divisible by $$7$$.
  • Question 10
    1 / -0
    Let $$P\left ( n \right ):n^{2}+n$$ is an odd integer
    $$P\left ( k \right )\Rightarrow P\left ( k+1 \right )$$ is true
    Then $$P\left ( n \right )$$ is true for all
    Solution
    Given that $$P\left( n \right) :{ n }^{ 2 }+n$$ is an odd integer.

    $$P\left( k \right) \Rightarrow P\left( k+1 \right) $$ is true.

    For $$P\left( n \right) $$ to be true for all $$n$$, it should be true for $$n=1$$

    $$P\left( 1 \right) ={ 1 }^{ 2 }+1=2$$ This is not an odd integer, So not true for $$n=1$$

    Check for $$n=2$$, $$P\left( 2 \right) ={ 2 }^{ 2 }+2=6$$ This is again not odd, 

    so not true for $$n=2$$

    For $$n=3$$, $$P\left( 3 \right) ={ 3 }^{ 2 }+3=9$$, odd so true

    For $$n=4$$, $$P\left( 4 \right) ={ 4 }^{ 2 }+4=20$$ not odd, so not true.

     So we see from options, it not true for any given option.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now