Self Studies

Principle of Mathematical Induction Test - 13

Result Self Studies

Principle of Mathematical Induction Test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$P(n)$$ be the statement $$n(n+1)+1$$ is odd, then which of the following is false?
    Solution
    $$\displaystyle P\left ( n \right )= n( n+1  )+1$$

     $$\displaystyle P\left ( 2 \right )=6+1=7$$

    $$\displaystyle P\left ( 3 \right )=3\times 4+1=13$$

    $$\displaystyle P\left ( 4 \right )=4\times 5+1=21$$

    $$\displaystyle \therefore $$ None of the above is even.

    Ans: D
  • Question 2
    1 / -0
    Let $$P\left ( n \right )=2^{3n}-7n-1$$ then $$P(n)$$ is divisible by
    Solution
    $$P\left( n \right) =2^{ 3n }-7n-1=-1-7n+{ \left( 1+7 \right)  }^{ n }$$

    $$\Rightarrow P\left( n \right) =-1-7n+\left( 1+{ n }_{ { C }_{ 1 } }7+{ n }_{ { C }_{ 2 } }7^{ 2 }+...+{ n }_{ { C }_{ n } }{ 7 }^{ n } \right) ={ n }_{ { C }_{ 2 } }7^{ 2 }+...+{ n }_{ { C }_{ n } }{ 7 }^{ n }$$

    $$\Rightarrow P\left( n \right) ={ 7 }^{ 2 }\left( { n }_{ { C }_{ 2 } }+{ n }_{ { C }_{ 3 } }7+...+{ n }_{ { C }_{ n } }7^{ n-2 } \right) $$

    Therefore, $$P(n)$$ is divisible by $$49$$.

    Ans: 49
  • Question 3
    1 / -0
    Let $$P(n)$$ be the statement representing the sum of next three successive natural numbers of $$n$$, $$\forall n\in N$$, then the smallest value of $$n$$ to which $$P(n)$$ is divisible by $$9$$ is
    Solution
    As $$\displaystyle P\left ( n \right )=\left ( n+1 \right )+\left ( n+2 \right )+\left ( n+3 \right )$$ 

    $$\displaystyle P \left ( n \right )=3n+3+3$$ 

    $$\displaystyle P \left ( n \right )=3\left ( n+2 \right )$$ 

    $$\displaystyle  \therefore P \left ( 1 \right )=3\left ( 3 \right ) = 9$$ 

    Which is divisible by $$9 \displaystyle $$

    $$ \therefore $$ least value of $$n$$ is $$1.$$
  • Question 4
    1 / -0
    Let $$P\left ( k \right ):2+4+6+...+2k=k\left ( k+1 \right )+2$$, then the statement $$P(m+1)$$ will be true if
    Solution
    Given $$P\left ( k \right ):2+4+6+...+2k=k\left ( k+1 \right )+2$$

    We have $$P(m+1)$$ is true.
    $$\Rightarrow 2+4+6+.....+2m+2(m+1)=(m+1)(m+2)+2$$
    $$\Rightarrow 2+4+6+.....+2m=(m+1)(m+2)+2-2(m+1)$$
    $$\Rightarrow 2+4+6+.....+2m=(m+1)m+2$$
    Hence, $$P(m)$$ is true.

    Also, $$P(1)$$ is not true as 
    $$LHS=2$$
    $$RHS=2+2=4$$

    Also, $$P(2)$$ is not true as 
    $$LHS=2+4=6$$
    $$RHS=2(3)+2=8$$


  • Question 5
    1 / -0
    Let $$\displaystyle P\left ( n \right )=1+\frac{1}{4}+\frac{1}{9}+...+\frac{1}{n^{2}}< 2-\frac{1}{n}$$ is true for
    Solution
    For $$n=1$$
    $$L.H.S=P(1)=1$$
    $$R.H,S=2-1=1.$$
    $$ L.H.S=R.H.S.$$
    $$\therefore 1$$ can't be $$<1.$$
    $$\Rightarrow P\left( 1 \right) $$is not true. 
    Again for $$n=2$$
    $$ \displaystyle L.H.S:P\left( 2 \right) =1+\frac { 1 }{ 4 } =\frac { 5 }{ 2 } .$$
    $$ \displaystyle R.H.S: P\left( 2 \right) =2-\frac { 1 }{ 2 } =\frac { 3 }{ 2 } =\frac { 6 }{ 4 } .$$
    $$L.H.S\quad P\left( 2 \right) <R.H.S\quad P\left( 2 \right) $$
    $$\therefore P\left( 2 \right) $$ is true.
  • Question 6
    1 / -0
    $$P\left ( n \right ):2^{n+2}< 3^{n}$$, is true for
    Solution

    $$\displaystyle P\left ( n \right ):2^{n+2}< 3^n$$

     Let $$\displaystyle n=1  \,\,\,\,P\left ( 1 \right ):2^{3}< 3^{1}$$ i.e. $$\displaystyle P\left ( 1 \right )=8< 3$$ false

     Let $$\displaystyle n=2\,\,\,\,  P\left ( 2 \right ):2^{4}< 3^{2}$$ i.e. $$\displaystyle P\left ( 2 \right )=16< 9$$ false 

    Let $$\displaystyle n=3\,\,\,\,  P\left ( 3 \right ):2^{5}< 3^{3}$$ or $$\displaystyle P\left ( 3 \right )=32< 27,$$ false

    Let $$n=4$$

     $$\displaystyle \therefore\,\,\,\,  P\left ( 4 \right ):2^{6}< 3^{4}$$ or  $$\displaystyle P(4)=64< 81$$ which is true.

    $$\displaystyle  P\left ( n \right ):2^{n+2}< 3^{n}$$ is true for $$\displaystyle \forall n> 3,n\epsilon N$$



  • Question 7
    1 / -0
    Let $$P(n)$$ be the statement that $$n^{2}-n+41$$ is prime, then which of the following is not true ?
    Solution
    given that $$\displaystyle P\left ( n \right )=n^{2}-n+41$$

    $$\displaystyle P\left ( 2 \right )=2^{2}-2+41=43$$ (prime true)

    $$\displaystyle P\left ( 3 \right )=3^{2}-3+41=47$$ (prime true)

    $$\displaystyle P\left ( 41\right )=41^{2}-41+41=\left ( 41 \right )^{2}$$ 

    $$\displaystyle \therefore P\left ( 41 \right )$$ is not true

    Ans: C
  • Question 8
    1 / -0
    Let $$P\left ( n \right ):2^{n}> n, \forall n\in N$$ and $$2^{k}> k, \forall n=k$$, then which of the following is true $$\forall k\geq 2$$?
    Solution
    $$\quad{ 2 }^{ k }>k$$, $$\forall n=k$$
    So, $${ 2 }^{ k+1 }>k+1$$                                                         ...(i)

    Also, $$k+k>k+1$$,  $$\forall k\ge 2$$
    $$\Rightarrow 2k>k+1$$                                                             ...(ii)

    And $${ 2 }^{ k+1 }>{ 2 }^{ k }>2k+1$$                                                  ...(iii)
    From (i), (ii) and (iii), we get option $$B$$.
  • Question 9
    1 / -0
    The inequality, $$P(n)=n!> 2^{n}$$ is true for
    Solution
    $$\displaystyle P\left ( n \right )= n!> 2^{n}$$

    $$\displaystyle  \therefore P\left ( 1 \right )= 1!> 2^{1} $$ (false)

    $$\displaystyle   P\left ( 2 \right )= 2!> 2^{2}=4$$ (false)

    $$\displaystyle   P\left ( 3 \right )= 3!> 2^{3}$$ or $$\displaystyle 6> 8$$ (false) 

    $$\displaystyle P\left ( 4 \right )=4!> 2^{4}$$ or  $$\displaystyle 24> 16 $$ (true)

    Hence, inequality holds if $$\displaystyle n\geq 4.$$

    Ans: $$n \ge 4$$
  • Question 10
    1 / -0
    Let $$P\left ( n \right ):a^{n}+b^{n}$$ such that $$a, b$$ are even, then $$p(n)$$ will be divisible by $$a + b$$ if
    Solution
    $$\displaystyle P\left ( n \right )=a^{n}+b^{n}\,\,\,\,\forall n \epsilon N.$$ 

    $$n=1$$   

    $$\displaystyle \therefore p\left ( 1 \right )= a+b $$ which is divisible by $$a+b.$$ 

    $$n=2$$ 

    $$\displaystyle \therefore P\left ( 2 \right )=a^{2}+b^{2} $$ not divisible by $$a+b$$ 

    $$n=3$$

    $$\displaystyle \therefore P\left ( 3 \right )=a^{3}+b^{3}=\left ( a+b \right )\left ( a^{2}-ab+b^{2} \right ) $$ which is divisible by $$a+b.$$ 

    with the help of induction, we conclude that p(n) will be divisible by $$a+b$$ if $$n$$ is odd.

    Short Cut Method: $$\displaystyle P\left ( n \right )=a^{n}+b^{n}$$and $$a, b \epsilon 2M $$ (even number) Fact: the sum of two odd powers whose bases are even will be always divisible by the sum of their bases 

    Therefore $$P(n)$$ will be divisible by $$a+b$$ For all $$\displaystyle n \epsilon  2k+1 $$ such that $$k \displaystyle \epsilon  N.$$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now