Self Studies

Principle of Mathematical Induction Test - 14

Result Self Studies

Principle of Mathematical Induction Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$f\left ( n \right ) = 8^{n}-3^{n}$$, if $$n$$ is odd natural number then $$f\left ( n \right )$$ is divisible by
    Solution
    $$f\left ( n \right ) = 8^{n}-3^{n}$$
    Since, $$n$$ is odd
    for $$n=1$$, we get $$f\left ( 1 \right ) = 8^{1}-3^{1}=5$$
    for $$n=3$$, we get $$f\left ( 3 \right ) = 8^{3}-3^{3}=5(97)$$
    for $$n=5$$, we get $$f\left ( 3 \right ) = 8^{5}-3^{5}=5(6505)$$
    Therefore, by induction we can say that $$f(n)$$ is divisible by $$5$$ for odd $$n$$.

    Ans: C
  • Question 2
    1 / -0
    If $$\displaystyle P\left ( n \right )= 1^{2}+3^{2}+5^{2}+...+\left ( 2n-1 \right )^{2}=  \frac{n\left ( 4n^{2} -1\right )}{3}$$, then which of the following does NOT hold good?
    Solution
    We are given $$P\left( n \right) ={ 1 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 }+......{ \left( 2n-1 \right)  }^{ 2 }=\displaystyle\frac { n\left( 4{ n }^{ 2 }-1 \right)  }{ 3 } $$
    We check the validity of this for the given options.
    A. $$P\left( 1 \right) $$
    LHS$$={ 1 }^{ 2 }=1$$, RHS$$=\displaystyle\frac { 1\left( 4{ \left( 1 \right)  }^{ 2 }-1 \right)  }{ 3 } =1$$
    So True for $$n=1$$.
    B. $$P\left( 2 \right) $$
    LHS$$=P\left( 2 \right) ={ 1 }^{ 2 }+{ 3 }^{ 2 }=10$$, RHS$$=\displaystyle\frac { 2\left( 4{ \left( 2 \right)  }^{ 2 }-1 \right)  }{ 3 } =10$$
    True for $$n=2$$
    C. $$P\left( 3 \right) $$
    LHS$$=P\left( 3 \right) ={ 1 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 }=35$$, RHS$$=\displaystyle\frac { 3\left( 4{ \left( 3 \right)  }^{ 2 }-1 \right)  }{ 3 } =35$$
    True for $$n=3$$.
    So ,it is true for $$n=1,2,3$$ so NOT true is option D
  • Question 3
    1 / -0
    If $$P\left ( n \right )= 1+2+3+\dots+n$$ is a perfect square, $$N$$ is less than $$100$$, then possible values of $$n$$ is/are
    Solution
    $$P(n)\quad =\sum _{ 1 }^{ n }{ { r } =\dfrac {n\times (n+1)}{2}\quad  } $$

    $$P(1) = 1$$

    $$P(8) = 36 =$$ square of $$6$$

    $$P(49) = 1225 =$$ square of $$35$$
  • Question 4
    1 / -0
    Let the statement $$P\left ( n \right ):2^{n}\geq 3n$$, the truth of $$P\left( k \right), \forall   k\in N  \Rightarrow$$ truth of,
    Solution
    Given $$P\left ( n \right ):2^{n}\geq 3n$$    .....(1)

    Consider $$P\left ( k+1 \right )$$

    $$\Rightarrow 2^{k+1}\ge 3k+3$$

    $$\Rightarrow 2^k . 2 \ge 3k+3$$

    $$\Rightarrow 2^k \ge \dfrac{3k+3}{2} \ge 3k$$

    Hence, $$2^{k} \ge 3k$$

    $$\text{Truth of}\,\, P(k+1) \Rightarrow \text{Truth of P(k)}$$

    Also, we will check for $$P(1),P(2),P(3)$$

    $$P(1):  2 \ngeq 3$$

    So, $$P(1)$$ is not true

    $$P(2): 4 \ngeq 6$$

    So,$$P(2)$$ is not true

    $$P(3): 8 \ngeq 9$$

    So,$$P(3)$$ is not true

  • Question 5
    1 / -0
    Let $$f\left ( n \right )$$ equals to the sum of the cubes of three consecutive natural numbers.
    $$f\left ( n \right )$$ leaves the remainder zero when divided by
    Solution
    Given that $$f\left( n \right) ={ \left( n-1 \right)  }^{ 3 }+{ n }^{ 3 }+{ \left( n+1 \right)  }^{ 3 }=3n^{ 3 }+6n$$
    Put $$n=1$$, to obtain $$f\left( 1 \right) =3.1^{ 3 }+6.1=9$$
    Therefore, $$f\left( 1 \right)$$ is divisible by $$9$$
    Assume that for $$n=k$$, $$f\left( k \right)=3k^{ 3 }+6k$$ is divisible by $$9$$
    Now, $$f\left( k+1 \right) =3\left( k+1 \right) ^{ 3 }+6\left( k+1 \right) =3{ k }^{ 3 }+6k+9\left( { k }^{ 2 }+k+1 \right) =f\left( k \right) +9\left( { k }^{ 2 }+k+1 \right) $$
    Since, $$f\left( k \right) $$ is divisible by $$9$$
    Therefore, $$f\left( k+1 \right) $$ is divisible by $$9$$
    And from the principle of mathematical induction $$f\left( n \right) $$ is divisible by $$9$$ for all $$n\in N$$
    Hence, option B is correct.
  • Question 6
    1 / -0
    The number of values of $$n$$, for which $$\displaystyle p(n)=1!\:+2!\:+3!\:+4!\:+\dots+\:n!$$ is the square of a natural number, is equal to
    Solution
    For $$n = 4$$, $$P(n) = 1+2+6+24 = 33$$.
    For $$n >4$$, $$n!$$ will always have $$0$$ in the units place. 
    $$3 $$ will be unit place digit of p(n) hence can not be sqaure of any natural no.
    So the $$n=1,3$$ are the answers.
  • Question 7
    1 / -0
    If $$n\in N$$, then $$n^{3}+2n$$ is divisible by
    Solution
    $$f\left( n \right) =n^{ 3 }+2n$$
    put $$n=1$$, to obtain $$f\left( 1 \right) =1^{ 3 }+2.1=3$$
    Therefore, $$f\left( 1 \right)$$ is divisible by $$3$$
    Assume that for $$n=k$$, $$f\left( k \right)=k^{ 3 }+2k$$ is divisible by $$3$$
    Now, $$f\left( k+1 \right) =\left( k+1 \right) ^{ 3 }+2\left( k+1 \right) ={ k }^{ 3 }+2k+3\left( { k }^{ 2 }+k+1 \right) =f\left( k \right) +3\left( { k }^{ 2 }+k+1 \right) $$
    Since, $$f\left( k \right) $$ is divisible by $$3$$
    Therefore, $$f\left( k+1 \right) $$ is divisible by $$3$$
    and from the principle of mathematical induction $$f\left( n \right) $$ is divisible by $$3$$ for all $$n\in N$$

    Ans: B
  • Question 8
    1 / -0
    If $$\displaystyle P\left ( n \right )=\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7n}{15}$$, then statement "$$P(n)$$ is a natural number" is true,
    Solution
    Given $$\displaystyle P\left ( n \right )=\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7n}{15}$$

    for $$n=1$$ $$\displaystyle P\left ( 1 \right )=\frac{1}{5}+\frac{1}{3}+\frac{7}{15}=\frac{15}{15} = 1$$ (true)

    for $$n=2$$ $$\displaystyle  P\left (2 \right )=\frac{32}{5}+\frac{8}{3}+\frac{14}{15}=\frac{150}{15} =10$$ (true )

    $$\displaystyle \therefore P\left (n \right )$$ is true for $$n=2$$

    Similarly by induction we say that $$P(n)$$ is a natural number $$\displaystyle \forall n \displaystyle \epsilon  N$$

    Ans: D
  • Question 9
    1 / -0
    Let $$P\left ( n \right )= n^{3}-n$$, the largest number by which $$P\left ( n \right )$$ is divisible $$\forall $$ possible integral values of $$n$$ is
    Solution
    $$P\left( n \right) =n^{ 3 }-n=\left( n-1 \right) n\left( n+1 \right) $$
    Therefore, $$P(n)$$ is the product of $$3$$ consecutive natural numbers
    which is divisible by $$3!=6$$

    Ans: D
  • Question 10
    1 / -0
    For every natural number n -
    Solution
    Consider a function
    $$f(n)=2^{n}-n$$

    Therefore
    $$f'(n)=2^{n}log2-1$$

    Now
    $$f'(n)>0$$ implies

    $$2^{n}log(2)>1$$

    $$2^{n}>\dfrac{loge}{log2}$$

    $$2^{n}>log_{2}(e)$$

    $$nlog2>log(log_{2}(e))$$

    $$n>log_{2}(log_{2}(e))$$

    Now
    $$2<e<3$$
    $$1<log_{2}(e)<log_{2}(3)$$

    $$1<log_{2}(e)<1.58$$

    $$log_{2}(1)<log_{2}(e)<log_{2}(1.58)$$

    $$0<log_{2}(log_{2}(e))<0.7$$
    Hence
    $$n>log_{2}(log_{2}(e))$$

    $$n>0.7$$
    Thus
    $$f(n)$$ is increasing for all $$n>0.7$$.
    But $$n$$ is a natural number.
    Hence
    $$f(n)$$ is increasing for all natural numbers $$n\in  N$$
    Hence
    $$2^{n}-n>0 $$
    $$2^{n}>n$$ for all $$n\in N$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now