Self Studies

Principle of Mathematical Induction Test - 17

Result Self Studies

Principle of Mathematical Induction Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If x > 1, then the statement $$P(n) : (1 + x)^n > 1 + nx$$ is true for
    Solution
    If $$x > 1$$ then the statement

    $$P(n) : (1 + x)^n > 1 + nx$$

    $$P(1) : (1 + x)^1 > 1 + x$$, which is false

    $$P(2) : (1 + x)^2 > 1 + 2x$$, which is true if $$x\neq 0$$

    Let $$P(k) : (1 + x)^k > 1 + kx$$ is true

    $$\Rightarrow (1 + x) (1 + x)^k > (1 + x) (1 + kx)$$

    $$\Rightarrow (1 + x)^{k+1} > (1 + x) (1 + kx) = 1 + (k + 1)x + kx^2$$

    $$\Rightarrow (1 + x)^{k+1} > 1 + (k + 1)x \because kx^2 > 0$$

    Hence $$P(n)$$ is true

    so $$P(n)$$ is true for all $$n > 1$$ and $$x\neq 0$$
  • Question 2
    1 / -0
    A student was asked to prove a statement by induction.
    (i) $$P(5)$$ is true and
    (ii) Truth of $$P(n) \Rightarrow$$ truth of $$P(n + 1)$$, $$n\epsilon N$$
    On the basis of this, he could conclude that $$P(n)$$ is true for
    Solution

  • Question 3
    1 / -0
    If n is a natural number then $$\left (\frac {n+1}{2}\right )^n \geq n!$$ is true when
    Solution
    Given equation,
                    $$\left(\dfrac{n+1}{2}\right)^n\ge{n}!$$
    For $$n=1$$,
               LHS=$$\left(\dfrac{1+1}{2}\right)^1=1$$
               RHS=$$1!=1$$
    For $$n=2$$,
              LHS=$$\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}=2.25$$
              RHS=$$2!=2$$
    Given condition is true for $$n\ge1$$. Hence, it is the answer.
  • Question 4
    1 / -0
    If $$n \in N$$, then $$x^{2n+1} + y^{2n+1}$$ is divisible by
    Solution

  • Question 5
    1 / -0
    The inequality $$n! > 2^{n-1}$$ is true
    Solution
    Given inequality,
                      $$n!>2^{n-1}$$
    For $$n=1$$,
                $$LHS=n!=1!=1$$
                $$RHS=2^{n-1}=2^{1-1}=2^0=1$$
                Inequality not satisfied.
    For $$n=2$$,
                $$LHS=n!=2!=2\times1=2$$
                $$RHS=2^{n-1}=2^{2-1}=2^1=2$$
                Inequality not satisfied.
    For $$n=3$$,
                 $$LHS=n!=3!=3\times2\times1=6$$
                 $$RHS=2^{n-1}=2^{3-1}=2^2=4$$
                 Inequality is satisfied in this case.
    Hence, the inequation is true for $$n>2$$.
  • Question 6
    1 / -0
    For positive integer n, $$10^{n-2} > 81n$$ when
    Solution
    $$10^{n-2}>81n$$
    For $$n=5$$,
            LHS=$$10^{5-2}=10^3=1000$$
            RHS=$$81n=81\times5=405$$
    $$\Rightarrow10^{n-2}>81n$$ for all $$n\ge5$$. Hence, the answer.
  • Question 7
    1 / -0
    State which of the following statements is true $$ \displaystyle 2^{16}-1 $$   is divisible by 
    Solution
    2$$\displaystyle ^{16}-1=\left ( 2^{4} \right )^{4}-1=\left ( 16 \right )^{4}-1$$
    =(16-1)(16+1)(16$$\displaystyle ^{2}$$+1)
    Hence 2$$\displaystyle ^{16}$$-1 is divisible by 17
  • Question 8
    1 / -0
    Let $$S(K) =1+ 3 + 5...+ (2K -1) =3 + K^2$$. Then which of the following is true
    Solution
    $$S(k) = 1+3+5+...+(2k-1)=3+k^2$$

    $$S(1) = 1= 3+ 1,$$ which is not true

    $$\because $$ S(1) is not true.

    $$\therefore $$ P.M. 1 cannot be applied

    Let $$S(k)$$ is true, i.e.

    $$1+3+5.... +(2k-1)=3+k^2$$

    $$\Rightarrow 1+3+5....+ (2k-1)+2k +1$$

    $$= 3+k^2 +2k+I=3+(k+1)^2$$

    $$\therefore S(k) \Rightarrow S(k + 1)$$
  • Question 9
    1 / -0
    The statement P(n) $$"1 \times 1! + 2\times 2! + 3\times 3! + ... + n \times n! =(n + 1)! 1"$$ is
    Solution
    $$P\left( 1 \right) :1\times 1=\left( 1+1 \right) =\left( 1+1 \right) !-1$$ is true 
    Let $$p(m)$$ be true 
    $$\Rightarrow 1\times 1!+2\times 2!+3\times 3!+...+m\times m!=\left( m+1 \right) !-1$$
    $$\Rightarrow 1\times 1+2\times 2!+3\times 3!+...+m\times m!+\left( m+1 \right) \times \left( m+1 \right) !$$
    $$=\left( m+1 \right) !-1\left( m+2 \right) \left( m+1 \right) !=\left( m+1 \right) !\left( m+2 \right) -1$$
    $$=\left( m+2 \right) !-1$$
    $$\Rightarrow p(m+1)$$ is also true
    $$\therefore P(n)$$ is true for each $$n$$ 
  • Question 10
    1 / -0
    If $$a, b$$ and $$n$$ are natural numbers then $$a^{2n-1}+b^{2n-1}$$ is divisible by
    Solution
    Let $$P(n)=a^{2n-1}+b^{2n-1}$$

    $$P(1)=a+b$$
    $$P(2)=a^3+b^3=(a+b)(a^2+b^2-ab)$$
    Out of given options we can conclude that $$P(n)$$ is divisible only by $$(a+b)$$

    It can also be done by Mathematical Induction.

    But here it is objective, so verification is good enough. 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now