Self Studies

Principle of Mathematical Induction Test - 19

Result Self Studies

Principle of Mathematical Induction Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\displaystyle \frac{1^2}{1.3} + \frac{2^2}{3 . 5}+\dots+ \frac{n^2}{(2n - 1)(2 n + 1)}$$ is
    Solution
    $$\dfrac{n^{2}}{(2n-1)(2n+1)}$$

    $$=\dfrac{4n^{2}}{4(2n-1)(2n+1)}$$

    $$=\dfrac{1}{4}[\dfrac{4n^{2}-1+1}{4n^{2}-1}]$$

    $$=\dfrac{1}{4}[1+\dfrac{1}{4n^{2}-1}]$$

    $$=\dfrac{1}{4}[1+\dfrac{1}{2}(\dfrac{2n+1-(2n-1)}{4n^{2}-1})]$$

    $$=\dfrac{1}{4}[1+\dfrac{1}{2}(\dfrac{1}{2n-1}-\dfrac{1}{2n+1})]$$

    Consider
    $$\dfrac{1}{2n-1}-\dfrac{1}{2n+1}$$

    $$=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}...\dfrac{1}{2n-1}-\dfrac{1}{2n+1}$$

    $$=1-\dfrac{1}{2n+1}$$

    $$=\dfrac{2n}{2n+1}$$

    Hence applying summation gives us

    $$\dfrac{n}{4}+\dfrac{1}{8}\sum (\dfrac{1}{2n-1}-\dfrac{1}{2n+1})$$

    $$=\dfrac{n}{4}+\dfrac{2n}{8(2n+1)}$$

    $$=\dfrac{n}{4}+\dfrac{n}{4(2n+1)}$$

    $$=\dfrac{n(2n+1)+n}{4(2n+1)}$$

    $$=\dfrac{n(2n+2)}{4(2n+1)}$$

    $$=\dfrac{n(n+1)}{2(2n+1)}$$
  • Question 2
    1 / -0
    By mathamatical induction $$n(n^2 - 1)$$ is divisible by
    Solution
    Let $$P(n) = n(n^2 - 1)$$

    Step I: For $$n = 1$$,

    $$P(1) = 1 (1^1 - 1)$$

    $$=$$ 0, 0 is divisible by 24.

    Therefore, the result is true for $$n=1$$ .

    Step II: Assume that the result is true for $$n = k$$
    i.e., $$P(k) = k (k^2 -1)$$ is divisible by 24
    $$\Rightarrow P(k) = 24r$$, when r is an integer and k is an odd positive integer.

    Step III: For $$n = k + 2$$
    $$\therefore   P(k + 2) = (k +2)((k + 2)^2 -1)$$
                           $$= (k + 2) (k^2 + 4k + 3)$$
                           $$= k^3 + 6k^2 + 11k + 6$$
                           $$= 24 r + k + 6k^2 + 11k + 6$$       (From assumption step)
                           $$= 6k^2 + 12k + 6 + 24 r$$
                           $$= 6(k + 1)^2 + 24 r$$
                           $$= 6(2m)^2 + 24 r$$           ($$\because $$ k + 1   is even, let k + 1 $$=$$ 2m)
                           $$= 24 (m^2 + r)$$

    $$\because m^2 + r$$ is an integer, $$\therefore 24(m^2 + r)$$ is clearly divisible by 24.

    Hence $$P(k + 2)$$ is divisible by $$24$$. This shows that the result is true for $$n = k + 2$$.
    Hence by the principle of mathematical induction, the result is true for n odd integer.
  • Question 3
    1 / -0
    If $$n$$ is an odd positive integer, then $$a^n + b^n$$ is divisible by
    Solution
    Let,  $$P(n) =a^n+b^n$$

    $$P(1) = a+b$$, which is divisible by $$a+b$$

    Now let $$P(k) =a^k+b^k$$ is divisible by $$a+b$$, where $$k$$ is an odd integer.

    $$\Rightarrow a^k+b^k = (a+b)f(a,b)......................... (1)$$

    Now, $$P(k+2)= a^{k+2}+b^{k+2} =a^2[(a+b)f(a,b)-b^k]+b^{k+2}$$

    $$\quad \quad  =a^2f(a,b)(a+b)-a^2b^k+b^{k+2}$$ from $$(1)$$

    $$\quad \quad  =a^2f(a,b)(a+b)-b^k(a^2-b^2)$$

    $$\quad \quad  =(a+b)\left[a^2f(a,b)-b^k(a-b)\right]$$, which is divisible by $$(a+b)$$

    Hence $$a^n+b^n$$ is divisible by $$(a+b)$$ for all odd positive integral $$n$$
  • Question 4
    1 / -0
    If $$a_1 = 1, a_{n+1} = \dfrac{1}{n+1}a_n,\forall n \geq 1$$, then $$a_n \ =$$
    Solution
    $$a_1=1, a_2 = \cfrac{1}{1+1}a_{1}=\cfrac{1}{2}(1)=\cfrac{1}{2!}, a_3 = \cfrac{1}{3}.\cfrac{1}{2!} = \cfrac{1}{3!}$$
    Similarly  $$a_n = \cfrac{1}{n}.\cfrac{1}{(n-1)!} = \cfrac{1}{n!}$$
  • Question 5
    1 / -0
    $$3 + 13 + 29 + 51 + 79 + ...$$ to $$n$$ terms $$=$$
    Solution
    Let $$S_{n}=3+13+29+51+79+\cdots +n  terms$$

    $$\because S_{1}=3$$ and $$S_{2}=3+13=16$$

    Similarly $$S_{3}=3+13+29=45$$

    By options, from $$(c)$$ as we have $$S_{n}=n^{3}+2n^{2}$$

    check by putting $$ n=1,  S_{1}=1^{3}+2.1^{2}=3$$

    $$S_{2}=2^{3}+2.2^{2}=16  $$ and $$S_{3}=3^{3}+2.3^{2}=45$$

    Thus option $$(c)$$ is correct
  • Question 6
    1 / -0
    The value of $$\displaystyle \frac{1}{1.2.3} + \frac{1}{2.3.4}+ ....+ \frac{1}{n (n + 1) (n + 2)}$$ is 
    Solution
    Let $$P(n) : \displaystyle \frac{1}{a .2. 3} + \frac{1}{2.3.4} + .....+ \frac{1}{n(n + 1) (n+2)} = \frac{n(n+3)}{4(n + 1) (n + 2)}$$               ...... (1)

    Step I: For $$n = 1$$,

    L.H.S. of $$(1) = \displaystyle \frac{1}{1.2.3} = \frac{1}{6}$$

    and R.H.S of $$(1) = \displaystyle \frac{1. (1 + 3)}{4(1 +1)(1+2)} = \frac{1}{6}$$

    Therefore P(1) is true.

    Step II : Assume that P(k) is true, then
    $$\displaystyle P(k) : \frac{1}{1.2.3} + \frac{1}{2.3.4} + ....+ \frac{1}{k(k + 1)(k + 2)} = \frac{k(k + 3)}{4(k + 1)(k+2)}$$

    Step III : For $$n = k +1$$,
    $$\displaystyle P(k + 1) : \frac{1}{1.2.3} + \frac{1}{2.3.4} + .... + \frac{1}{k(k + 1)(k+2)} + \frac{1}{(k + 1)(k+2)(k+3)}$$

    $$= \displaystyle \frac{(k + 1)(k+4)}{4(k + 2) (k + 3)}$$

    $$\therefore $$ L.H.S $$= \displaystyle \frac{1}{1.2.3} + \frac{1}{2.3.4} + ..... + \frac{1}{k(k +1) (k + 2)} + \frac{1}{(k +1)(k + 2)(k+3)}$$

    $$= \displaystyle \frac{k(k+3)}{4(k + 1)(k+2)} + \frac{1}{(k + 1)(k+2)(k + 3)}$$            (By assumption step)

    $$= \displaystyle \frac{k (k + 3)^2 + 4}{4(k + 1)(k+2)(k+3)}$$

    $$=\displaystyle \frac{k^3 + 6k^2 + 9k + 4}{4(k + 1)(k +2)(k+3)}$$

    $$=\displaystyle \frac{(k + 1)^2(k + 4)}{4(k + 1)(k+2)(k+3)}$$

    $$=\displaystyle \frac{(k + 1)(k +4)}{4 (k + 2)(k + 3)}$$

    $$= R. H. S$$

    Hence P(k + 1) is true. Hence by the principle of mathematical induction P(n) is true for all n $$\in$$ N.
  • Question 7
    1 / -0
    The value of $$\displaystyle \tan^{-1} \left ( \frac{1}{3} \right ) + \tan^{-1} \left ( \frac{1}{7} \right ) +\dots+ \tan^{-1} \left ( \frac{1}{n^2 + n + 1} \right )$$ is
    Solution
    $$T_n = \tan^{-1}\left(\cfrac{1}{1+n(1+n)}\right)= \tan^{-1}\left(\cfrac{(n+1)-n}{1+n(1+n)}\right)=\tan^{-1}(n+1)-\tan^{-1}n$$

    Hence required sum is $$=\sum T_n$$

    $$=[\tan^{-1}(2)-\tan^{-1}1]+[\tan^{-1}(3)-\tan^{-1}2]+........+\tan^{-1}(n)-\tan^{-1}(n-1)]+[\tan^{-1}(n+1)-\tan^{-1}n]$$

    $$=\tan^{-1}(n+1)-\tan^{-1}1 = \tan^{-1}\left(\cfrac{n+1-1}{1+(n+1).1}\right)=\tan^{-1}\left(\cfrac{n}{n+2}\right)$$
  • Question 8
    1 / -0
    By mathematical induction $$p^{n+1} + (p+1)^{2n -1}$$ is divisible by
    Solution
    Let $$f\left( n \right)={ p }^{ n+1 }+{ \left( p+1 \right)  }^{ 2n-1 }$$
    we have $$f\left( 1 \right) ={ p }^{ 2 }+p+1$$ which is divisible by $${p}^{2}+p+1$$
    Now, assume that $$f(m)$$ is divisible by $${p}^{2}+p+1$$
    $$\therefore{ p }^{ m+1 }+{ \left( p+1 \right)  }^{ 2m-1 }=k\left( { p }^{ 2 }+p+1 \right) $$     ...(1)
    $$f\left( m+1 \right) ={ p }^{ m+2 }+{ \left( p+1 \right)  }^{ 2m+2-1 }$$
    $$={ p }^{ m+2 }+{ \left( p+1 \right)  }^{ 2m-1 }.{ \left( p+1 \right)  }^{ 2 }$$
    $$={ p }^{ m+2 }+\left[ k\left( { p }^{ 2 }+p+1 \right) -{ p }^{ m+1 } \right] { \left( p+1 \right)  }^{ 2 }$$
    $$={ p }^{ m+2 }-{ \left( p+1 \right)  }^{ 2 }{ p }^{ m+1 }+k{ \left( p+1 \right)  }^{ 2 }\left( { p }^{ 2 }+p+1 \right) $$
    $$={ p }^{ m+1 }\left( p-{ p }^{ 2 }-2p-1 \right) +k{ \left( p+1 \right)  }^{ 2 }\left( { p }^{ 2 }+p+1 \right) $$
    $$=-\left( { p }^{ 2 }+p+1 \right) \left[- k{ \left( p+1 \right)  }^{ 2 }+{ p }^{ m+1 } \right] $$
    Hence, $$f(m+1)$$ is divisible by $${p}^{2}+p+1$$
    Hence by mathematical induction $$f(n)$$ is divisible by $${p}^{2}+p+1$$ for all $$n\in N$$
  • Question 9
    1 / -0
    Using the principle of mathematical induction, find $$tan  \alpha  + 2  tan   2 \alpha   + 2^2  tan  2^2  \alpha + ....$$ to $$n$$ terms:
    Solution
    Let P(n): $$tan  \alpha + 2 tan  2\alpha + 2^2 tan 2^2 \alpha + .... + 2^{n - 1} tan (2^{n -1} \alpha) = cot  \alpha - 2^n \cdot cot (2^n \cdot \alpha)$$              ..... (1)

    Step I: For $$n = 1$$,

    L.H.S. of $$(1) = tan  \alpha$$

                           $$= cot  \alpha - cot  \alpha + tan  \alpha = cot  \alpha- (cot  \alpha - tan  \alpha)$$

                           $$= cot  \alpha- \displaystyle \left ( cot  \alpha - \frac{1}{cot  \alpha} \right )$$

                           $$= cot  \alpha - 2 \left ( \dfrac{cot^2  \alpha - 1}{2  cot  \alpha} \right )$$
                           
                           $$= cot  \alpha - 2 \left ( \dfrac{cos^2  \alpha - \sin ^2 \alpha}{2  cos  \alpha \sin \alpha}  \right )$$

                           $$= cot  \alpha - 2  cot  2 \alpha$$

                           $$= R. H.S.$$ of (1)

    Therefore, $$P(1)$$ is true.

    Step II: Assume it is true for $$ n = k$$, then

    $$P(k) : tan  \alpha + 2  tan  2\alpha + 2^2 tan  2^2\alpha + .... + 2^{k - 1} tan (2^{k - 1} \alpha)$$

                    $$= cot  \alpha - 2^k cot (2^k \alpha)$$

    Step III: For $$n = k + 1$$,

    $$P(k +1) : tan  \alpha + 2 tan  2 \alpha + 2^2  tan  2^2 \alpha + ... +  2^{k - 1} tan  (2^{k - 1} \alpha) + 2^k  tan (2^k  \alpha) = cot   \alpha - 2^{k + 1} cot  (2^{k + 1} \alpha)$$

    $$L.H.S. = tan \alpha  + 2  tan  2\alpha + 2^2 tan  2^2 \alpha + .... + 2^{k - 1} tan (2^{k - 1} \alpha) + 2^k  tan (2^k  \alpha)$$

                    $$= cot  \alpha - 2^k  cot (2^k \alpha) + 2^k tan (2^k \alpha)$$                (By assumption step)

                     $$= cot  \alpha - 2^k (cot (2^k \alpha) - tan (2^k \alpha))$$

                     $$= cot \alpha - 2^k \cdot 2 \displaystyle \left ( \frac{cot^2 (2^k \alpha) - 1}{2 cot (2^k  \alpha)} \right )$$

                     $$= cot  \alpha - 2^{k + 1} \cdot cot (2 \cdot 2^k \alpha)$$

                     $$= cot  \alpha - 2^{k + 1} \cdot cot (2^{k + 1} \alpha)$$

                     $$= R.H.S.$$

    This show that the result is true for $$n = k + 1$$. 

    Hence by the principle of mathematical induction, the result is true for all n $$\in$$ N.
  • Question 10
    1 / -0
    If $$p$$ is a prime number, then $$n^p -n$$ is divisible by $$p$$ for all $$n$$, where
    Solution
    $$n^{p}-n$$ is divisible by $$p$$ for $$n=1$$
    Let, $$k^{p}-k=p\lambda$$, where  $$k\in N$$ and  $$\lambda \in Z$$  

    Now, $$\left (k+1  \right )^{p}-\left (k+1  \right )=k^{p}+^{p}\textrm{C}_{1}k^{p-
    1}+.........+^{p}\textrm{C}_{p}-1-k$$

    $$\left (k^{p}-k  \right )+\left (^{p}\textrm{C}_{1}k^{p-1}+...+^{p}\textrm{C}_{p-1}k 
     \right )$$

    $$=p\lambda +\left (^{p}\textrm{C}_{1}k^{p-1}+...+^{p}\textrm{C}_{p-1}k  \right )$$
    which is divisible by $$p$$
    Reason :$$^{p}\textrm{C}_f$$ is always divisible by by p when $$f\neq p,0$$ because p is a prime number as the denominator will not have any factors or multiples of p. 

    So by mathematical induction, $$n^{p}-n$$ is divisible by $$p$$ for all $$n\in N$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now