Step I: For $$n = 1$$,
L.H.S. of $$(1) = tan \alpha$$
$$= cot \alpha - cot \alpha + tan \alpha = cot \alpha- (cot \alpha - tan \alpha)$$
$$= cot \alpha- \displaystyle \left ( cot \alpha - \frac{1}{cot \alpha} \right )$$
$$= cot \alpha - 2 \left ( \dfrac{cot^2 \alpha - 1}{2 cot \alpha} \right )$$
$$= cot \alpha - 2 \left ( \dfrac{cos^2 \alpha - \sin ^2 \alpha}{2 cos \alpha \sin \alpha} \right )$$
$$= cot \alpha - 2 cot 2 \alpha$$
$$= R. H.S.$$ of (1)
Therefore, $$P(1)$$ is true.
Step II: Assume it is true for $$ n = k$$, then
$$P(k) : tan \alpha + 2 tan 2\alpha + 2^2 tan 2^2\alpha + .... + 2^{k - 1} tan (2^{k - 1} \alpha)$$
$$= cot \alpha - 2^k cot (2^k \alpha)$$
Step III: For $$n = k + 1$$,
$$P(k +1) : tan \alpha + 2 tan 2 \alpha + 2^2 tan 2^2 \alpha + ... + 2^{k - 1} tan (2^{k - 1} \alpha) + 2^k tan (2^k \alpha) = cot \alpha - 2^{k + 1} cot (2^{k + 1} \alpha)$$
$$L.H.S. = tan \alpha + 2 tan 2\alpha + 2^2 tan 2^2 \alpha + .... + 2^{k - 1} tan (2^{k - 1} \alpha) + 2^k tan (2^k \alpha)$$
$$= cot \alpha - 2^k cot (2^k \alpha) + 2^k tan (2^k \alpha)$$ (By assumption step)
$$= cot \alpha - 2^k (cot (2^k \alpha) - tan (2^k \alpha))$$
$$= cot \alpha - 2^k \cdot 2 \displaystyle \left ( \frac{cot^2 (2^k \alpha) - 1}{2 cot (2^k \alpha)} \right )$$
$$= cot \alpha - 2^{k + 1} \cdot cot (2 \cdot 2^k \alpha)$$
$$= cot \alpha - 2^{k + 1} \cdot cot (2^{k + 1} \alpha)$$
$$= R.H.S.$$
This show that the result is true for $$n = k + 1$$.
Hence by the principle of mathematical induction, the result is true for all n $$\in$$ N.