Self Studies

Complex Numbers and Quadratic Equations Test 11

Result Self Studies

Complex Numbers and Quadratic Equations Test 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$(1 + i)^8 + (1 -i)^8 =$$
    Solution
    $${ \left( 1+i \right)  }^{ 8 }+{ \left( 1-i \right)  }^{ 8 }$$
    $$\Rightarrow { \left( 1+i \right)  }^{ 8 }={ \left[ { { \left( 1+i \right)  }^{ 2 } } \right]  }^{ 4 }={ \left[ { 1+2i+{ i }^{ 2 } } \right]  }^{ 4 }={ \left[ { 1+2i-1 } \right]  }^{ 4 }$$
                         $$={ \left[ { { \left( 2i \right)  }^{ 2 } } \right]  }^{ 2 }$$
                         $$={ \left( -4 \right)  }^{ 2 }$$
                         $$=16$$

    Similarely $${ \left( 1-i \right)  }^{ 8 }=16$$

    $$\therefore { \left( 1+i \right)  }^{ 8 }+{ \left( 1-i \right)  }^{ 8 }$$

    $$=16+16$$

    $$=32.$$

    Hence, the answer is $$32.$$
  • Question 2
    1 / -0
    If z = x + iy and |z 1 + 2i | = | z + 1 2i |,then the locus of z is
    Solution
    We know that $$z=x+iy$$
    $$\Rightarrow \left| z-1+2i \right| =\left| z+1-2i \right| ,$$    locus of $$x=?$$
    $$\Rightarrow \left| x+iy-1+2i \right| =\left| x+iy+1-2i \right| $$
    $$\Rightarrow \left| \left( x-1 \right) +i\left( y+2 \right)  \right| =\left| \left( x+1 \right) +i\left( y-2 \right)  \right| $$
    $$\Rightarrow \sqrt { { \left( x-1 \right)  }^{ 2 }+{ \left( y+2 \right)  }^{ 2 } } =\sqrt { { \left( x+1 \right)  }^{ 2 }+{ \left( y-2 \right)  }^{ 2 } } $$
    $$\Rightarrow x^2-2x+1+y^2+4y+4=x^2+2x+1+y^2-4y+4$$
    $$\Rightarrow -2x+4y+5=2x-4y+5$$
    $$\Rightarrow 4x=8y$$
    $$\Rightarrow x=2y$$
    $$\therefore x-2y=0$$
    $$\therefore$$ The locus of $$z$$ is a straight line.
    Hence, the answer straight line.
  • Question 3
    1 / -0
    Modulus of $$\displaystyle \frac{cos \theta- isin\theta }{sin\theta - icos\theta} is$$
    Solution
    $$\displaystyle |\frac{\cos \theta- i\sin\theta }{\sin\theta - i\cos\theta}|$$ $$=\displaystyle \frac{|\cos \theta- i\sin\theta| }{|\sin\theta - i\cos\theta|}$$
    $$= \displaystyle \frac{\sin^2 \theta +\cos^2 \theta}{\sin^2 \theta +\cos^2 \theta}=1$$
    $$\therefore \displaystyle |\frac{\cos \theta- i\sin\theta }{\sin\theta - i\cos\theta}|=1$$
    Hence, option D.

  • Question 4
    1 / -0
    Find the value of: $$i^2 + i^4 + i^6$$ +..... upto $$(2n +1)$$ terms.
    Solution
    $$i^2$$ + $$i^4$$ + $$i^6$$ + ...upto $$(2n + 1 )$$ terms

    $$=(-1 +1)+ (-1 +1)+( -1 + $$ .....upto $$(2n +1))$$terms $$\Rightarrow$$ (odd terms)

    $$= 0+ 0 + ....-1$$

    $$= -1$$

    Hence, option D is correct.
  • Question 5
    1 / -0
    $$i^n + i^{n + 1} + i^{n + 2}+ i^{n + 3} (n   \in   N) $$ is equal to
    Solution

    $$\textbf{Step-1: Expanding the terms}$$

                    $${{i}^{n}}+{{i}^{n+1}}+{{i}^{n+2}}+{{i}^{n+3}}$$

                    $$= {{i}^{n}}+{{i}^{n}}.i+{{i}^{n}}.{{i}^{2}}+{{i}^{n}}.{{i}^{3}}$$

    $$\textbf{Step-2: Taking } \mathbf{{i}^{n}} \textbf{ common}$$

                    $$= {{i}^{n}}(1+i+{{i}^{2}}+{{i}^{3}})$$

                    $$= {{i}^{n}}(1+i-1-i) $$          $$\mathbf{[\because {{i}^{2}}=-1,{{i}^{3}}=-i]}$$

                    $$= {{i}^{n}}(0)=0$$

    $$\textbf{Hence the correct option is (C) 0}$$

  • Question 6
    1 / -0
    The argument of the complex number $$z = sin  \alpha + i (1 - cos  \alpha)$$ is
    Solution
    $$z = sin  \alpha + i (1 - cos \alpha)$$
    $$\Rightarrow arg (z) = tan^{-1} \displaystyle \left ( \frac{1 - cos  \alpha}{sin  \alpha} \right ) = tan^{-1} \left (\frac{\displaystyle 2 sin^2 \frac{\alpha}{2}}{2 sin \displaystyle \frac{\alpha}{2} cos \frac{\alpha}{2}} \right )$$
    $$= tan^{-1} \displaystyle \left ( tan \frac{\alpha}{2} \right ) = \frac{\alpha}{2}$$
  • Question 7
    1 / -0
    If x and y are real then which one of the following is true
    Solution
    We know that $$|x+y|\leq |x|+|y|$$
    $$\Rightarrow |x-y+y|\leq |x-y|+|y|$$
    $$\Rightarrow |x|-|y|\leq |x-y|$$
    $$\therefore |x-y|\geq |x|-|y|$$
    Hence, option C.

  • Question 8
    1 / -0
    Solve:
     $$\displaystyle \left|(1 + i)\frac{(2+i)}{(3 + i)}\right| $$
    Solution
    Given, $$\displaystyle |(1 + i)\frac{(2+i)}{(3 + i)}| $$=$$\displaystyle |(1 + i)|\frac{|(2+i)|}{|(3 + i)|}$$ 

    Since, $$|Z_{1}Z_{2}|=|Z_{1}||Z_{2}|$$ and $$\displaystyle|\frac{Z_{1}}{Z_{2}}|=\frac{|Z_{1}|}{|Z_{2}|}$$   

    $$=\displaystyle \sqrt{2}\cdot \frac{\sqrt{5}}{\sqrt{10}}=1$$

    $$\therefore \displaystyle |(1 + i)\frac{(2+i)}{(3 + i)}| = 1$$ 

    Hence, option C.
  • Question 9
    1 / -0
    The modulus of (1 + i) (1 + 2i) (1 + 3i) is equal to
    Solution
    $$|(1 + i) (1 + 2i) (1 + 3i)|$$ = $$|1+i||1+2i||1+3i|$$     ($$\because |Z_{1}Z_{2}|=|Z_{1}||Z_{2}|$$)
    $$=\sqrt {2}\cdot\sqrt {5}\cdot\sqrt {10}$$
    $$\therefore  |(1 + i) (1 + 2i) (1 + 3i)|=10$$
    Hence, option D.

  • Question 10
    1 / -0
    If $$|z -2 + i| = |z-3-i|$$, then the locus of z is
    Solution
    Given: $$ |z-2+i|=|z-3-i|$$

    To find the locus of: $$ z$$.

    Solution:

    Let, $$z=x+iy$$

    $$|z-2+i|=|z-3-i|$$

    $$|x+iy-2+i|=|x+iy-3-i|$$

    $$ |(x-2)+i(y+1)|=|(x-3)+i(y-1)|$$

    On squaring both sides, we get

    $$ \Rightarrow { \left( \sqrt { { (x-2) }^{ 2 }+{ (y+1) }^{ 2 } }  \right)  }^{ 2 }={ \left( \sqrt { { (x-3) }^{ 2 }+{ (y-1) }^{ 2 } }  \right)  }^{ 2 } \quad ...\left\{ |x+iy|=\sqrt { { x }^{ 2 }+{ y }^{ 2 } }  \right\} $$

    $$ \Rightarrow { x }^{ 2 }+4-4x+{ y }^{ 2 }+1+2y$$$$ = { x }^{ 2 }+9-6x+{ y }^{ 2 }+1-2y$$

    $$ \Rightarrow 2x+4y-5=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now